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Pascal BROUSSE!', Pierre ROZANES', Erick LANSARD", Vincent MARTINOT'*

This paper gives the results of a study which was conducted on the SkyBridge
constellation station keeping within an Alcatel and CNES partnership
framework. The first step consisted in proving the feasibility of the station
keeping on the candidate otbits taking into account a relatively new and
stringent station keeping criterion. Then, once the mission orbit choice had
been made, the study enabled us to detail the perturbations on the real orbit
and to define the type of station keeping maneuver to be performed.

The last part consisted in imagining the best possible station keeping strategy
for a constellation in terms of robustness and ground workload.

The SkyBridge station keeping definition is not complete; the results
presented here are not final and may still change according to choice of
system or satellite.

INTRODUCTION

The SkyBridge project, designed and promoted by Alcatel Telecom is an ambitious
satellite Telecommunications program. Its goal is to offer continuous interactive multimedia
services to millions of users around the world by means of a constellation of Low Earth Orbit
satellites.

The baseline SkyBridge constellation consisted of a nominal 64-satellite constellation.
In a partnership framework with Alcatel the CNES flight dynamics division is in charge of
studying station keeping strategy.

The major problems raised by constellation station keeping analysis are, first, to assess
the feasibility of a strategy in relation with the mission requirements and, then, to define a
strategy which limits the operational workload generated by the orbit control of a large
number of satellites. '

¥ Space Mathematics Division, Mission Analysis Department, Toulouse Space Center, CNES, 18 avenue Edouard Belin, F-
31401 Toulouse cedex, France. Emails : Pascal.Brousse @cnes.fr, Pierre.Rozanes@cnes.fr

T Alcatel, 26 avenue J.F. Champolion, BP 1187, 31037 Toulouse cedex 1, France. Emails : erick.lansard.alcatel@ e-mail.com,
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For such a telecommunication service, the mission requirements lead the choice of an
altitude which is as high as possible but still compatible with the allowed radiation level. In
the range of altitudes selected from service quality criterion, based on geometrical coverage,
minimum elevation threshold and link budget constraints, many orbit perturbations have same
amplitude. The drag is not anymore the predominant perturbation, the classical station keeping
strategy as the ones used at lower orbits has to be adapted to the relative importance of the
lunisolar and solar radiation pressure perturbations. ‘

Those perturbations and their effects in terms of orbital behavior must be carefully
analyzed, particularly with realistic assumptions on the size, mass and shape of the satellite to
precisely determine the long term orbit evolution caused by non-gravitational forces which are
the main input data for the station keeping definition.

Moreover, such a telecommunication system requires a station keeping criterion which
is not commonly used. The SkyBridge system is designed to provide wide band
communication over the entire world to a huge set of identical terminals which have the same
pointing capability. This terminal feature determines thé maximum deviation allowed between
the so-called reference orbit and the actual orbit and then defines the station keeping
constraints which must be fulfilled over the complete orbit. As for the reference orbit it must
be simple enough to be loaded once for all into the user terminal and to provide all the orbital
data needed to keep the terminal in good working order: visibility dates of each of the 64
satellites, antenna pointing data for each visibility, etc..

Another key point of a constellation station keeping strategy design is its efficiency to
limit the operational workload with regards to the large number of satellites. Even if the orbit
surveillance and control is supposed to be automatic with human intervention only in
contingency cases, the number of maneuvers should be reduced to a minimum to increase the
reliability of the station keeping operation and, then, to decrease the operational workload.
And this reliability should be obtained without adding, as far as possible, constraints on the
telecommunication mission such as attitude maneuver before orbit maneuver which could
require, in the best case, on board antenna pointing reprogramming and, in the worst case,
telecommunication mission interruption.

This paper describes the SkyBridge station keeping strategy analysis and shows the
feasibility of the envisaged strategies



SKYBRIDGE STATION KEEPING REQUIREMENTS

The main requirement of the SkyBridge constellation is to provide a continuous world-
wide single coverage in Ku band already used by geostationary satellites. Due to the risk of
interference, a frequency sharing constraint has been introduced. The geometric modeling of
this constraint is defined as in Figure 1.

SkyBridge 2 GEO satellite
SkyBridge 1

Ol = 10°

If a < Oy = SkyBridge 1 forbidden to user terminal

User terminal

Figure 1 : Frequency Sharing Constraint

Any ground point ( user terminal ) in visibility with a SkyBridge satellite with an
elevation angle above 10 degrees, cannot establish a link with this satellite if the angle
between the line of sight of the user terminal to the satellite and the line of sight of the user
terminal to any point of the geostationary ring is less than 10 degrees.

Despite this constraint, the system is designed to provide to any user terminal located
between 70° S and 70°N a continuous single coverage.

It has been decided that the orbital data needed to schedule the terminal antenna
pointing will be loaded once for all into the terminal. This solution was supposed to be simpler
than a regular broadcast of updated ephemeris of all the satellites to all the terminals.

But, in order to store limited orbital data in the terminals, the reference orbit should be
phased in relation to the Earth with a cycle duration of several days, to obtain a repetitive
geometry.

The station keeping constraint is given by the maximum authorized deviation between
the actual orbit and the reference orbit tracked in open loop by the terminals. For the time
being, the system specification defines a maximum deviation of 0.5 degrees between the line
of sight of the user terminal to the reference position and the line of sight of the user terminal
to the actual position.

The SkyBridge station keeping requirements, phased reference orbit with a maximum
angular deviation of 0.5 deg, leads inevitably to absolute station keeping.



Indeed, the purpose of the relative station keeping is to keep the relative geometry of the
constellation constant while allowing the altitude to decrease. The major interest of this kind
of strategy is to decrease ‘the total number of station keeping maneuvers but, unfortunately,
relative station keeping is not applicable if the orbit is to remain phased in relation to the
Earth.

At the early stages of the project, two altitudes were envisaged : one 24 hour resonant
orbit at an altitude of 1630 km and a non resonant orbit at an altitude of 1457 km.
STATION KEEPING FEASIBILITY AT AN ALTITUDE OF 1630 KM

The nominal SkyBridge station keeping orbit is a phased circular orbit and the first step
of the station keeping definition was to choose the cycle duration and the nominal altitude.
The inclination of the orbit was already fixed at 55 deg.

Taking into account the J2 term of the Earth potential, the parameters of the phased orbit
at these altitude and inclination were as follows:

semi major axis : 8008.000 km

number of node periods during the cycle : 12
cycle duration : 0.9902 days

ecéentricity :0

inclination : 55 deg.

With this orbit, the geometry of the constellation is periodical with a period duration of
1 day; this notably limits the amount of data corresponding to the visibility schedule and
pointing data stored in terminals.

But this very short cycle duration raised the problem of the strong resonance of the orbit
in relation with the Earth potential perturbation. The aim of the preliminary study was to
assess the feasibility of the station keeping taking into account this strong resonance and the
stringent constraint of 0.5 deg maximum deviation.

This resonance due to the earth potential causes a disturbance whose amplitude is much
higher than the amplitude of the other perturbations; the station keeping feasibility study must
therefore identify the maximum effect of this disturbance.

The resonant earth potential terms can be easily identified by using the Kaula
development of the disturbing potential.
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As the orbit is circular, we only consider term q = 0 as functions Glpg(e) are null for
e=0 and g=0.
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The perturbations occur for \Pm =0

which occurs for 1-2p=1 m=12 and 1-2p= 2 and m=24.
The quadruplets (1,m,p,q) corresponding to the main resonant terms are therefore:
(13,12,6,0),(15,12,7,0),(17,12,8,0).......(23,12,11,0),(24,24,11,0)

The effect of these resonant terms on the semi-major axis and the inclination is a
periodic effect with a very long period equivalent over a shorter time horizon to a secular
effect. An analytical development allows the maximum amplitude of the phenomena to be
calculated on the semi-major axis and on the inclination.

For this orbit at an altitude of 1630 km, we obtain the following values:
1.29 m/day on a
and 0.0237 deg/year on i.

This effect is the maximum effect on this orbit but the actual value, in fact, depends on
the initial phase and longitude of the ascending node of the orbit.

A station keeping simulation by converting the maximum angular deviation of 0.5 deg
into a maximum phase deviation and a maximum node longitude deviation leads to following
station keeping costs:

Total Av: 20.5 m /s for a life of 8 years
inter-maneuver time: 39.5 days
with combined semi-major axis and inclination maneuvers.

The station keeping cost, although high, is not necessarily very design-critical in relation
to the one generated by the positioning. This result demonstrated that the use of this orbit was
feasible from a station keeping point of view.

Yet, additional radiation and space debris considerations led the constellation designers
to envisage a lower altitude in order to improve the life time of the satellite. An altitude of
1457 km was then selected as the nominal station keeping altitude.



NOMINAL ORBIT PERTURBATIONS AT AN ALTITUDE OF 1457 KM

Nominal parameters of the reference orbit

The first step of the new altitude analysis was to define the corresponding nominal
parameters :

the inclination was still fixed at 55 deg,

the number of nodal periods per day was chosen equal to 12+11/28 which gives a semi
major axis equal to 7834.983 km and a cycle duration of 27.709970 days

Because the purpose of the reference orbit is to have constant parameters, it was decided
to choose a frozen eccentricity. Indeed it is unthinkable to have a reference orbit with an
eccentricity vector which is time variable, it is simpler to have a constant eccentricity vector

5=0
which is achieved by freezing the eccentricity (a) )

e=

Taking into account the zonal terms of the earth potential from J2 to J16 and the
nominal values of the semi major axis and the inclination, the components of the reference
eccentricity vector are as follows :

e = 0.94064 1073
o =90 deg

The initial values of the other orbital parameters Q and o=w+M are not specified
because they could range from 0 deg to 360 deg depending on date and on satellite considered
in the constellation.

In fact, all the right ascension of the ascending node and phase values will be deduced,
at a given date, from the constellation architecture and the actual values reached by the first 4
satellites launched in the plan which will become the first plan of the constellation. Today
there is no requirement on the initial value of the ascending node longitude of this first plan.

The nominal mean parameters of the reference orbit are summarized below :
a=7834.983 km
i=55deg
e = 0.94064 10
w =90 deg

The SkyBridge constellation architecture is given by the Figure 2.
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Figure 2 ;: SkyBridge Constellation Architecture

Orbit perturbations

The hypotheses on the satellite surface and mass taken into account to compute the orbit
perturbations are the following :

solar panel surface : 47 m>
average satellite body surface : 4 m®
satellite mass : 1000 kg

The perturbations to be analyzed are the perturbations leading to deviation of the actual
orbit with respect to the reference orbit. The long term deviation between the two orbits will
be controlled by the station keeping strategy to fulfill the maximum deviation constraint.

The relative perturbations between two different orbital planes of the constellation due
to the relative geometry of each plane with respect to the sun, the moon and the earth are not
analyzed because they have no impact on the station keeping strategy definition, they just
produce a natural shift between the maneuver calendar of each satellite.

The main results of our perturbation analysis are presented below.



Atmospheric drag perturbation

The atmospheric drag leads to a decrease of the semi-major axis at different rates
depending on the solar activity (Figure 3).

Solar activity __da/dt (m/j)
high 0.44
medium 0.17
low 0.10

SkyBridge Station Keeping: Drag
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Figure 3 : Drag Perturbation Between 1980 And 1990

Perturbations due to the luni-solar potential

As shown in Figure 4, the luni solar potential leads to a periodical evolution of the
inclination but generates a secular drift on Q which has to be controlled .

0 0.12 deg/year
. Two periods :
i 130 days due to the moon
48 days due to the sun




Lunisolar perturbations on SkyBridge
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Figure 4 : Lunisolar Perturbations

Perturbation due to the solar radiation pressure

The main effect of the solar radiation pressure is a periodic evolution of the eccentricity

around the frozen eccentricity

SkyBridge frozen eccentricity

Without perturbation
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Figure 5 : Solar Radiation Pressure Perturbation



STATION KEEPING STRATEGIES

Station keeping criterion

The SkyBridge station keeping requirement is based on the maximum angular deviation
seen from a ground station between the actual satellite and its reference position. The user
terminal tracks the satellite in open loop following the reference orbit and the allowed angular
deviation, 8, compatible with the terminal link budget is fixed to 0.5 deg whatever the relative
geometry between the user and the satellite.

To define the station keeping strategy, the maximum value of J reached over a complete
orbit has to be written as a function of the orbital parameter deviation between the reference
orbit and the actual orbit.

To obtain this equation, the first step is to write the maximum angular deviation, &, seen
form the earth center between two orbits :

8.’ = (8 +cosi 8Q) + 8i* + (sini 8Q)*
where :
e Jo is the phase deviation
e 3Q is the RAAN deviation
o i is the inclination deviation
and considering small angles.
Then & can be easily linked to d by the following formula :
asind,

186 =—F<—
d acosd, —ae

The following drawing (Figure 6) shows the optimal evolution over time of
considering only an initial phase deviation and the atmospheric drag as disturbance.

Maneuvers

£

0.5 deg

time

Figure 6 : Sketch Of The Station Keeping Criterion Evolution
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And the Figure 7 shows the effects of the different perturbations on the actual evolution
of 8.

Q.5 =
N 1]
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LAY /4 \
! [ A i
} A/\ Drag + s é{ radiatioﬁ/p:%ssure
0.3 s \
a ! Drag + Q drift \ H
s 0.2 i \ 4
!
0.1 D rag + Q drift Ho.po3 deg
_i
.’. !
oi‘; 7.00 13720 13740 13760 13780 13800 13820 13840
Figure 7 : Effects Of Perturbations On The Station Keeping Criterion Evolution
It appears that :

e the atmospheric drag is still the main perturbation for the station keeping criterion,

e an initial inclination offset of 0.003 deg on the actual orbit allows the secular drift on
8Q to be decreased. As there is no secular evolution on the inclination deviation, this
enables us to write roughly & as the sum of a term which is a function of do: and a
quasi constant term

= 802 +2 8o 8Q cos i + 8Q? + 812

So the main purpose of the SkyBridge strategy is to maintain the semi-major axis
around its reference value taking into account the satellite attitude law used to maintain the
solar panels pointed towards the sun for power optimization.
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Satellite attitude law

To permanently orient the solar panels towards the sun two degrees of freedom are
used :

e arotation around the Z axis which is the nadir axis,
e and arotation around the Y axis which is the rotation axis of the solar panels.

The optimal combination of these two rotations leads to a continuous yaw steering of
the spacecraft over its orbit. The theoretical law is given with the notation of Figure 8 by the
following formula

7
sin(a ~-a,)

where B is the angle between the sun line and the orbital plane,
¢ is the spacecraft yaw axis.

and o is the in orbit position in reference with o which is the canonical
position.

Figure 8 : Angle Definition

Even if a simplified law is loaded into the satellite, the yaw angle follows a periodic
evolution whose amplitude is a function of f.

The yaw steering strategy is used continuously except when § <Bo. When P is near this
angular limit a fixed yaw attitude is utilized to avoid excessive yaw rates. In this case, the
satellite is positioned at a yaw angle of 0 or 180 deg.

12



According to this attitude law, three orbit control strategies are possible which adapt
differently to attitude control.

Strategy 1:

With this strategy, we only correct the semi-major axis when yaw steering is disable. In
this mode, the yaw angle is equal to 0 deg or 180 deg, the nozzle is then oriented according to
the speed of the satellite or opposing the speed of the satellite. This configuration enables the semi-
major axis to be increased or decreased. ‘

The yaw steering mode is disable periodically every 47 days during a period lasting
several days.

This strategy does not allow correction of Q or correction of i.

Strategy 2:

In this strategy, whatever the attitude of the satellite, an attitude maneuvre is performed
before the orbit maneuver to obtain optimum maneuver attitude. This strategy enables all
optimum orbit corrections but leads to strong coupling between the attitude and the orbital
maneuvers.

This strategy leads to a depointing of the solar panels during orbital corrections and can
lead to an interruption in the telecommunication service.

Strategy 3:

In this strategy, we will make semi-major axis maneuvers whatever the yaw angle value
ensuring that the off-plane thrusts induced do not lead to evolutions of 8Q and 8i incompatible
with the station keeping strategy. To avoid the off-plane component from being too high, the
maneuvre are only performed when the yaw angle is lower than 60 deg.

This strategy enables semi major axis corrections to be made practically at all times. It
also enables £ and i corrections to be made if required.

Station keeping strategy trade-off

The station keeping of a constellation must be as flexible as possible to, on the one
hand, generate minimum possible constraints on the mission and, on the other hand, to limit
the operational constraints.

A strategy which is not robust may lead to extra operational work in case of unexpected
dispersion. Although this extra work maybe possible for a single satellite system, it is
certainly very difficult to absorb when controlling a constellation.

13



This is why, at this stage in the study, strategy 3 seems the most suitable. Indeed, it
enables maneuvers to be made practically at all times without generating additional attitude
maneuvers.

Strategy 1 is highly constraining concerning possible maneuver slots; it is therefore not
very robust in case of dispersion and generates a higher number of maneuvers.

Strategy 2, although optimum for orbit control, generates too high a constraint on the
payload which must take into account the scheduled maneuvers to repoint its onboard
antennas.

Strategy 3 leads to negligible extra costs in terms of consumption while offering all the
possibility of types of maneuvers which makes the strategy robust to dispersion. Also, it
generates a number of maneuvers near to the optimum number of maneuvers.

The table below summarizes the performances of each of the strategies over a life time
of 8 years and taking into account a medium solar activity.

Strategy | total Av | total Avt average Av Number of|Average time interval
(w/s) (m/s) (ooms) maneuvers ?;at;vsen maneuvers
1 025 025 5 46 o
2 0.24 0.24 7 35 20
3 0.38 0.24 11 36 78
CONCLUSION

This study conducted by CNES in partnership with Alcatel has enabled us to prove the
feasibility of the SkyBridge station keeping on two different orbits, one being highly resonant.

As, finally, a non-resonant orbit was chosen, the perturbations were analyzed to
evidence the perturbations of the real orbit in relation to the reference orbit.

Lastly, a strategy robust to dispersions and without additional constraints was proposed.
It seems today the most suitable for controlling this 64-satellite constellation.

Of course, the Skybridge station keeping is not yet frozen and still subject to
refinements. Bu the current paper shows that there exists efficient feasible solutions and the
trade-offs between the possible options are well understood.
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MULTI-SUNSYNCHRONOUS CONSTELLATIONS FOR -
CONTINUOUS SURVEILLANCE IN TROPICAL REGIONS

Marco M. Castronuovo!, Carlo Ulivieri and Giovanni Laneve®

Uniform Homogeneous Constellations (UHC) of small satellites on multi-sun-
synchronous (MSS) orbits, which allow to revisit any given location every m
nodal days with an integer number n/m of different illumination geometries
repeated every n days, have been considered. These constellations could offer a
good means of continuous surveillance for the tropical regions where natural
disasters, such as floodings and droughts, are most common.

A study has been carried out to ascertain how they allow to obtain efficient
revisit coverages and repeat cycles, deploying satellites on one or more orbital
planes whose inclination has been chosen equal to tropical latitudes. The
dynamical behaviour of a satellite constellation has been simulated, so to
analyze the configuration and coverage evolution under the effects of the major
perturbations.

INTRODUCTION

Satellite remote sensing offers the only means of obtaining synoptic coverage of large
geographical regions; sunsynchronous quasi-polar orbits allow to observe from low altitudes a wide
latitudinal range, excluding the polar caps.

However longitudinal coverage is strictly related to the swath width of the onboard
instrument and to the required revisit frequency of observation; the spatial gaps occurring between
two consecutive satellite ground traces is uniformly reduced if a suitable value m of nodal days is
accepted. The gap is so much wider how lower is the latitude; for this reason the observation of low
latitude areas is critical since here a high spatial resolution and fast response to the detection of
natural and human-caused catastrophes is particularly required. The best solution is obtained when
the gap (either temporal or spatial) is reduced by using a constellation with satellites located on
circular Multi-SunSynchronous (MSS) orbits’. A study has been carried out to obtain efficient

T Post Doc Fellow of the Universita degli Studi di Roma “La Sapienza’, Scuocla d'Ingegneria Aerospaziale, Via Eudossiana
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revisit coverages and repeat cycles from satellites deployed on one or more orbital planes whose
inclination has been chosen close to tropical latitudes.

The dynamical behavior of a test-case constellation has been simulated numerically by means of
GEODYN II software package, so to analyze the configuration and coverage evolution under the
effects of the major perturbations.

SINGLE SATELLITE REPEATING GROUND TRACK PATTERN

A single circular orbit satellite will perform a continuous ground track pattem; the
geographical coordinates of its nadir trace for a uniformly rotating spherical earth are given as:

¢ = latitude = sin™ (sini sinu)

A = longitude = A, +tan™(cosi tanu)-—(a)E —Q) t

These relations are obtained by applying Napier’s rules to the spherical triangle represented
in Figure 1; @, is the angular earth rotation, £2 the orbital nodal precession rate and u the

argument of latitude.
Merbdian -

Sasellite frack

Paraliet

Equator

Figure 1 Geometry of satellite ground track

The westward longijtudinal separation between consecutive equatorial crossing (S; ) is given
by:

S =T (wE - Q) (1)

where T, is the orbital nodal period, whose expression is

18



4cos’i - 1) @

where:

k=205 B

Unless using a sensor with a quite wide swath, the spatial gap between the consecutive
revolutions of the track pattern does not guarantee a complete coverage in a period of the order of
few days; on the other hand the condition for periodic coverage is that the nadir trace is duplicated
after some definite period of time after which the previous pattem is retraced and so on indefinitely.
The possibility to have the required coincidence of the R* orbital node with the nodal earth rotation
is accomplished by adjusting the satellite nodal period so as to produce exactly R revolutions in m
nodal days (D, ):

mD, =RT, 3)
with
D, =2 @
wp—-Q

When the apparent motion of the Sun (2% ) is equal to £2° (sunsynchronous condition)
D, = solar day.

Since m and R are restricted to integral values Eq. (3) tends to limit 7,, (and then the corresponding
altitudes) to a series of discrete values, taking also into account the necessity of considering periods
of reasonable durations in order to locate satellites in low orbits (avoiding, however, excessive air

drag). Substituting Eqgs. (2) and (4) into Eq. (3) and expressing £2° as a f\mctlon of a and i, we
obtain the following polynomial in a for the periodicity condition:

Ca*+C,a*+C,a*” +C,a* +C, =0 &)

with
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C,=—?/%; 2=—-%’; C3=—9;§—K(4cos2i—l)
2
C, =-‘7~I%cosi; C, =—-I—<;—-cosi (4 coszi—l)

The coverage pattem also can be considered discrete (intermittent). The m-fold equatorial arc
is evenly divided in two different ways: in m equal parts and also in R equal parts; the simplest
single division mode which includes both the m and the R-fold divisions is the least common
multiple of R and m or lem(R,m). This solution is unique; in practical applications the uniqueness
requirement is met simply by assuming that only relatively prime m, R pairs are considered.

The number of orbits performed in one day is the repetition factor Q which can be split in two
terms according to the relation

Q=Ni+Nf=N,.+ic- 6)
m

where N; 1is the integer number of orbits performed daily and Ny is its fractional part. Then the
abovesaid possible solutions (pairs of R and m) are given by the values of £, prime integer with m
and 1<k <m-1; it defines the ground track spacing according to the relationship:

Ay=Ay+8, mod(d—’k;) 0

where A, represents the crossing longitude on day d, 4o is the co-rotating crossing longitude at the
initial time (d = 0) and the operator
. 1
mod (x) = frac(x) — int [ﬁac (x) +5]
allows to have subsequent crossings within Ao #S; / 2, according to Hopkins’ notation®. After m
days, the longitudinal increment S; will be divided in m equal increments of longitude S, = S; / m;
during the pattern development between two consecutive nodes, each day’s nodal co-rotating

crossing occurs east (or west) of the previous day’s node by + k S,, where the sign is positive or
negativeif k<m/2ork>m/2 respectively.
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S, is related to the swath width of the instruments and influences the choice of a uniformly
distributed ground tracks at the end of the repeat interval. In fact, coverage of the earth’s equatorial
region from a satellite is accomplished if the swath width on the earth’s surface required for
coverage is equal to the minimum longitudinal interval S,, between earth traces. If Ny = 0 then the
number of orbits performed must be an integer and the repeat interval m is only one day.

UNIFORM HOMOGENEOUS CONSTELLATIONS

Our interest is limited to constellations consisting of satellites evenly deployed on circular
orbits with the same altitude and inclination (Uniform Homogeneous Constellations - UHC).
Previous works demonstrated that the addition of the number of satellites NV on the same orbital
plane and of the number of orbital planes P to a constellation has the potential of improving both
revisit and spatial coverage™. Table 1 summarizes all the possible situations for single and multi-
plane UHC.

Table 1
SINGLE AND MULTI-PLANE UHC

r (nodal days) Sm (km) mir
P lem S P-m-N
(highest revisit PN lem " lem
frequency)
P lem S, m-N
(minimum ground Y )
track spacing) N P -Iem Jem

where 7 is the repeat cycle of the constellation (nodal days) and lem = Iecm (N,m) is the least
common multiple between N and m and S,, is the minimum ground track spacing,

ORBIT SELECTION

In order to provide a service of continuous and global surveillance of the tropical regions the
mission design must take into account several requirements in the orbit selection. The orbit
periodicity (repetitivity), and the same geometry of illumination for remote sensing systems
operating in the visible are the main ones.

The condition of multisunsychronism (MSS) is obtained when the difference between the
apparent solar motion £2  and the orbital nodal precession rate £2° is a submultiple of the
difference between the angular earth rotation @, and £2' . Since £2° depends on both the inclination i
and the semi-major axis a of the orbit, the MSS condition can be expressed by the relation:
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where # is the number of nodal days necessary to re-encounter the same geometry of illumination.
The upper sign is valid for £2 < €2 , the lower one corresponds to £2° > (2" . In our specific case
orbits with inclination around the tropical latitudes have been considered so that £2° < 0, therefore
the upper sign should be considered. Eq. (8) is represented in Figure 2 for inclinations between 20°
and 35° and satellite altitudes between 400 km and 1000 km for various values of 7.

satelllte altitude (km)

Among all these solutions only periodic orbits should be considered. This can be obtained by
solving simultaneously Eq. (5) and Eq. (8). Expliciting cos 7 from Eq. (8) and substituting into
Eq. (5) we obtain the following polynomial in a whose solutions are both periodic and MSS,

n¥*l

nQs ¥,

cosi

Figure 2 Multi-sunsynchronous solutions from Eq. (8)

orbital inclination (deg)

provided that m is a submultiple of 7 and that R and m are prime.

Ca’ +C,a* +C,a>* +C, =0

with
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1

C, = ; C,=—-—

' uk n-1 g J;
C3=__’;__.__.f_:_1__._; C4=—--{<-
n(Qs—a)E) #

To obtain reasonable values for the orbital altitude (say between 400 km and 1100 km) R
should be given a value around (712+14) x m. Examples of solutions of Eq. (9) are shown in Table 2.
The selection among all possible solutions has been done in accordance with the following criteria.
The value of the illumination cycle m has been chosen to be the lowest possible, since a UHC
constituted by an equal number of satellites has a revisit frequency of I nodal day; the satellite
altitude A has been limited between 400 km and 1100 km and the orbit inclination i between 23.45°
and 35°. Then, for each solution found, the minimum instantaneous field of view (min. ifov)
necessary to obtain the global coverage of the earth has been computed. The last column of Table 2
contains the distance between the ground tracks at the equator.

Tt should be noted that since the orbital inclination i does not appear in Eq. (9), its value will
be computed by Eq. (8) once Eq. (9) has been solved for the value of the semi-major axis a. This
means that also the orbital inclination can assume only discrete values in accordance with the
integer numbers m, n and R that are used as input. Obviously appropriate triples of m, n and R can
produce orbital inclination values in the desired range.

According to Table 1 the revisit frequency can be reduced to values below I nodal day
deploying a number N of satellites (equal to m) on each of P orbital planes. So, for example, in the
cases with m = 2 a revisit frequency of % nodal day can be obtained with a UHC composed by 4
satellites, deployed on 2 orbital planes (2 satellites on each orbital plane) with ascending nodes at
90° apart. Of course the choice of a particular MSS orbit as reference trajectory for a surveillance
constellation is the result of a trade-off process among several conflicting parameters such as the
illumination cycle duration (that determines the number of satellites required to have a specific
revisit frequency), the height of the orbit (and therefore the required instantaneous field of view to
obtain global coverage), the inclination (determining the extension of the area to be covered) and the
number of different illumination geometries. The requirements of each particular mission will
determine, time by time, the conditions to be met by the constellation.
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Table 2
MSS ORBITS WITH INCLINATION AROUND TROPICAL LATITUDE

m n h (km) i(deg) R k min. ifov (deg) Sm (km
2 50 644.41 26.60 29 1 51.29 1381.90
2 54 648.18 35.14 29 1 63.06 1381.90
2 58 999 34 27.08 27 1 37.36 1484.26
2 60 1000.74 31.22 27 1 42.06 1484.26
3 48 588.20 24.21 44 2 35.22 910.80
3 51 700.59 26.08 43 1 32.60 931.98
3 54 703.31 3281 43 1 39.50 931.98
3 57 937.63 28.01 41 2 27.51 977.44
3 60 939 .82 33.83 41 2 32.29 977.44
3 60 1062.96 28.28 40 1 25.17 1001.88
4 48 561.48 25.85 59 3 29.55 679.24
4 52 565.56 34.86 59 3 37.88 679.24
4 52 729.52 27.07 57 1 2474 703.07
4 56 906.85 27.30 55 3 20.88 728.64
4 60 "1094.57 26.64 53 1 17.61 756.13
5 45 418.09 25.59 76 1 30.47 52730
5 50 547.68 31.59 74 4 29.04 541.55
5 50 677.42 24 .64 72 2 19.44 556.60
5 55 749.08 32.76 71 1 23.04 564.44
5 55 888.20 25.86 69 4 16.23 580.80
5 60 1037.91 29.50 67 2 16.15 598.13
6 48 431.73 32.61 91 1 30.74 440.38
6 48 535.03 27.38 89 5 21.91 450.28
6 54 759.56 30.23 85 1 17.76 471.47
6 54 875.54 23.91 83 5 12.75 482.83

NUMERICAL SIMULATION AND ORBIT MAINTENANCE

To evaluate the influence of the main perturbations on the orbital parameters of a multi-
sunsynchronous UHC, a particular test case has been considered for numerical integration. In order
to guarantee a global coverage of the tropical regions with a revisit time of % nodal day (around 12
hours), a multi-sunsynchronous orbit with an altitude of 648.18 km and an inclination of 35.14° has
been chosen as reference trajectory for the intended satellite constellation. Such an orbit gives rise
to repetitive ground track with a revisit interval of 2 nodal days and a separation between adjacent
tracks of 1382 km at the equator. In addition, every 54 nodal days the same place on the ground is
flown over in the same illumination conditions. The relatively high inclination of this orbit implies
the continuous coverage of a quite vast area. If, as in this case, this has to be obtained with a very
limited number of satellites (only 4), this results in a large number of illumination and, being the
ground tracks at the equator considerably far apart from each other (1380 km), a very wide
instantaneous field of view of the sensor. The pattern of ground tracks for such an orbit during a
complete m-day cycle is shown in Figure 3.
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Figure 3 Ground track pattern of the test case orbit during the m-day cycle

The exact repeat of the satellite ground track pattern may be altered as a consequence of the
variation of the nodal period, of the nodal precession rate and of the orbital inclination.

The major perturbations affecting the ground track repeatability are the atmospheric drag and
the luni-solar gravitational potential. Luni-solar disturbances cause secular and long-period
variations in the nodal period, the nodal precession rate and the inclination, while the atmospheric
drag reduces systematically the semi-major axis, affecting both the nodal period (first order effect)
and the nodal precession rate (second order effect).

To simulate the behavior of the constellation under the influence of the major perturbations a
numerical integration of the motion of the satellites has been carried out by means of GEODYN II
software for a time span of about 710 days. All perturbations suitable for propagation of low earth

orbits have been selected.

We have considered ¢ satellites (mass = 300 kg, cross section area = 3 m’ and Cp = 2.0)
uniformly deployed on 2 orbital planes with nodes equally spaced (90° apart) The evolution of the
semi-major axis for the 4 satellites considered is represented in Figure 4. As expected we can notice
a decrease in the semi-major axis at an almost constant rate due to the atmospheric drag. However,
it is evident that the two planes of the constellation are affected in a different way by the
aerodynamic resistance. Such a difference can be explained by the effect of the atmospheric diurnal
bulge due to the heating of the atmosphere by direct illumination of the Sun. Nevertheless, because
of the multi-sunsynchronicity of these orbits, the differential effect between the two planes is
smoothed out in comparison- with the case of corresponding sun-synchronous orbits that have

constant geometry of illumination.
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Figure 4 Semi-major axis evolution for the 4 satellites of the constellation

The maintenance of the operational orbit considered has been analyzed evéluating the
maneuver requirements, taking into account that, at the altitude considered, the driving natural
effect is the reduction of the nodal period due to the atmospheric drag. In fact, because of the
constant reduction in the semi-major axis induced by the aerodynamic resistance, the satellite
ground track slowly drifts to East. The knowledge of the nodal crossing drift is fundamental for
planning the orbital corrections needed in order to keep the correct configuration of the
constellation.

A possible strategy that maximizes the time interval between the maneuvers consists in
starting the control cycle by placing each satellite on its eastem boundary of the longitude
deadband, with a semi-major axis augmented by a suitable amount Aa with respect to the nominal
value. f 4a is computed according to the expected semi-major axis decay, the sub-satellite ground
track will drift westward, until will reach the western boundary of the deadband exactly when the
semimajor axis is back to its nominal value. Afterwards, the further reduction in the semi-major
axis will cause an inversion in the ground track drift eastward, and, as far as the drag force may be
considered constant during a full control cycle, the eastern boundary of the deadband will be
reached when the semimajor axis assumes a value that is lower than the nominal one by 4a. At that
point the semi-major axis must be increased by 24a by means of the propulsion system to repeat the
control cycle and maintain the ground track within the required tolerance.
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For circular orbits affected by a constant drag force, the velocity increment AV, required to
restore the initial conditions at the end of each control cycle, the time interval between maneuvers
and the corresponding Aa can be easily computed':

3
AVC = M (10)
3w; R;

1< AAT an
BpV
Aa:-fi o na T, (12)

where p is the air density, B the ballistic coefficient and Rz the earth equatorial radius.

Considering a tolerance on the ground track A = # I km, the Jacchia atmospheric model’
with an exospheric temperature of 1000 K, and the assumption that monopropellant hydrazine
would be used as fuel for the orbit control system the following values can be obtained for our test
case from Egs. (10), (11) and (12).

Table 3
CONTROL CYCLE RELEVANT FIGURES
Altitude (km) T.(days) AV, (/s per yr) Fuel (kg/vr) Aa (m
648.18 19.1 04 0.1 18

The luni-solar disturbances affect the track repeatibility, but can be taken into account by
means of very small corrections to the semi-major axis control cycle. Nevertheless, due to the
resonance existing between the sun motion and the nodal precession rate of multi-sunsynchronous
orbits, long period and secular variations of the inclination could be expected.

An inclination variation involves a displacement of the sub-satellite track at higher or lower latitude.

Therefore, an inclination control cycle should be envisaged as well if the track repeatability
requirement has to be met everywhere along the orbital path.

27



REFERENCES

1. C. Ulivieri and L. Anselmo, “Multi-Sun-Synchronous (MSS)V Orbits for Earth Observation”,
Advances in the Astronautical Sciences, Vol. 76, Univelt Inc, San Diego, 1991 pp. 123-133.

2. R. G. Hopkins, “Long-Term Revisit Coverage Using Multi-Satellite Constellations”, AJAA
Paper N. 88-4276-CP, AAS/AIAA Astrodynamics Conference, Minneapolis, USA, 1988.

3. C. Ulivieri, G. Laneve and S. M. Hejazi Moghaddam, “UPH Constellations for Continuous
Regional Surveillance”, AAS 97-622, AAS/AIAA Astrodynamics Conference, Sun Valley,
USA, 1997.

4. C. Uhivieri, G. Laneve and S. M. Hejazi Moghaddam, “Orbit Design Analysis for Remote
Sensing Satellite Constellations™, Paper presented at the IAF Workshop on Mission Design
& Implementation of Satellite Constellations, Toulouse, France, November 1997.

5. L. G. Jacchia, Revised Static Models of the Thermosphere and Exosphere with Empirical
Temperature Profiles, Smithsonian Astrophysical Observatory, Special report 332, 1971.

28



AAS 98-302

MODELS AND ALGORITHMS FOR CONSTELLATION STATION
KEEPING STRATEGIES AND SATELLITES REPLACEMENT

C. Brochet, J.M. Garcia, J.M. Enjalbert, T. Céolin*

During the mission of a constellation, maneuvers must be introduced periodi-
cally to reset the drifted satellites. Moreover some satellites may fail during
the life of the constellation, and maneuvers have to be done to ensure the
desired coverage.

In this paper, we propose several optimization models for this problem. For
each model we present the most efficient resolution algorithm. Each model
consists in minimizing the total consumption due to maneuvers. It takes into
account the trajectory of each satellite and constraints on their relative posi-
tions. An additional constraint is introduced to limit the number of satellites
that can be simultaneously controlled. Such an optimization problem is a
Mixed Integer Non Linear Programming (MINLP). It contains boolean and
real variables. Boolean variables determine which satellites can be thrusted,
and real variables correspond to the value of maneuvers.

The global problem is splitted on the basis of the generalized Bender’s
decomposition method (projection on the boolean variables space).

The first model is linear and differential (relative satellite positions). The sub-
problem (calculation of the impulsive thrusts) is solved by a dual approach
that finds the solution in a finite number of steps. It provides the global opti-
mum in a very short computing time. This model is interesting in the case
where the phasing of the constellation is not far from nominal conditions.
The second model is nonlinear and non differential. It represents the real
problem without simplifications. The resolution of the sub-problem is done
using a direct search approach (Hooke and Jeeves algorithm) to determine
real variables in the sub-problem. This model is used to solve the station
keeping problem and to determine optimal maneuvers to replace satellites in
case of failure.

Numerical experiments and comparison between the two approaches are pre-
sented for various constellation configuration parameters.

INTRODUCTION

Spatial projects are more and more numerous, and regularly, satellites are launched
in orbit in order to begin a mission for many years. The objective of a constellation is for
example to ensure a coverage that allows datas communication between two satellites or
between a satellite and a ground station. To avoid gaps in the required coverage, relative
positions of these satellites must not exceed a fixed threshold. But many perturbations
make the trajectory of satellites drifted, and it is necessary to regularly maneuver some of
them. This process is called station keeping. These maneuvers have to be calculated in

order to minimize the consumption of each satellites, since the mass of ergol is limited.
t*  LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse cedex 04, France.
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Moreover, since the number of simultaneous maneuvers is limited, additional constraints
have to be taken into account. A same model can be used to calculate replacement maneu-
vers when a satellite fails.

Previous researches have been done on this subject. A linear model of the station
keeping optimization problem has been stated, and a method to solve it has been proposed
(Ref. 8 and 9). In this paper, we present new robust and efficient methods that can solve
this linear problem. We also present a nonlinear station keeping optimization problem and
an algorithm to solve it exactly.

In the first section, we present the problem modelling. The second section is devoted
to the resolution of the mixed-variables problem. The method is decomposed into two lev-
els: the master problem and the sub-problem. It needs successive resolutions of the sub-
problem (real variables problem with boolean variables fixed). The two following sections
present the resolution of the real variables problem, assuming that constraints can be lin-
ear or nonlinear. In the last section, numerical results and comparisons are presented.

STATEMENT OF THE PROBLEM

Station keeping problem

In this paper circular Walker constellations with N satellites are considered. The life
of the constellation is decomposed into successive station keeping cycles. At each cycle,
the station keeping optimization problem must be solved. It consists in finding the lowest
values of maneuvers, that maintain the desired coverage, respecting operational con-
straints. These constraints mean that all satellites cannot be thrusted simultaneously, but
just M among N. To take this into account, each station keeping cycle contains K steps.
Only M maneuvers at the beginning of each step are allowed. That’s why boolean vari-

ables B are introduced in the optimization problem. If ﬁik is equal to 1 then the corre-

sponding satellite i is allowed to maneuver at the beginning of the step k, otherwise it
cannot maneuver.

cycle=T = cycle=T o> < cycle=T =
e1 7] eK- eK— €1 €2 €K-1
? |m< e |m< e 2 e [
start ! * time
- satellite 1 & step 1
B satellite 2 Tspan= start of the mission

Figure1l Station keeping cycles
Hence, solving the optimization station keeping problem, is to find for a cycle:
e Which satellite can maneuver at each step? Values of boolean variables: Bik
e What are the values of these maneuvers? Values of real variables: 8Vik
Therefore, the problem is a mixed-variables problem. It contains K*N boolean variables

and K*N real variables.
The general expression of this problem is the following:
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mingy, ﬁJ(SV, )

lAd{.‘l <o Vi, k i denotes satellites whereas k refers to stéps
K-~1
2 ]8 Vlk* < Cons; Vi Cons;is the maximal consumption authorized for satellite i

1)

N
Y Bk<m Wk

i=1

(1-B5-8vk=0 Vi
L

The objective is to minimize the total consumption of each satellite. The problem has two-
sorts of constraints. The first one is a coverage constraint (distance between two satellites
|Ad| must not exceed a threshold ¢) and the three remaining constraints are operational
constraints.

Description of maneuvers

As it has been mentioned, we treat circular Walker constellations. Orbital parame-
ters taken into account are [a, i, Q, o] respectively semi-major axis, inclination, right
ascension of the ascending node (RAAN) and mean anomaly.

The correction of the semi major axis and the mean anomaly can be done through in-plane
maneuvers dV,, whereas the correction of the inclination and the RAAN have to be done
through a combination of in-plane and out of plane maneuvers 8V, and 8V, (Ref. 1 and
2).

Criterion

In all station keeping models proposed, the objective is to minimize the total con-
sumption of satellite maneuvers.
Possible objective functions are:
K-1 N

minﬁ,SVJI(B’SV) JI(B’SV) = 20 Z ﬁ{c)\/(iBVfi)2+(8V£i)2
k=0i=1
) K-1 N
ming syl (B:8V) LB,V = 3 3 BHfevE|+ v @
k=0i=1
K-1N

ming syJ3(B,8V)  J3(B,8V) = kzo.zlﬁf[(svg)h(avf’ 21
=0i=
The first criterion minimizes the sum of complete maneuvers.
The two others criteria minimize the sum of each component of each maneuvers.
In practice the choice of the criterion will depend on the physical possibility of doing
maneuvers in both directions simultaneously or not.

Resolution
The global optimization problem Eq. (1) can generally be written as follows:
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mi“SV, Bf(SV, B8

g(8v,B)<0 3)
h(3V,B) = 0

sve KN Be {0, 1}KN

In this paper, this problem Eq. (3) will be called the mixed-variables problem. It
belongs to the class of MINLP (Mixed Integer Non Linear Programming). This kind of
problem is well studied in the literature (Ref. 3, 4, 5 and 6). All methods proposed, need
successive resolutions of the real variables problem Eq. (4), that will be called the sub-
problem (with fixed boolean variables).

ming,, f(8V)

g(6V)g0 @
h(8V) =0

§Ve REKN

The next section is devoted to the description of an exact method solving the mixed-
variables problem Eq. (3). The resolution of the sub-problem Eq. (4) will depend on its
characteristics. These methods will be described in the two following sections.

THE RESOLUTION OF THE MIXED-VARIABLES PROBLEM

The resolution of the mixed-variables problem Eq. (3) consists in finding values of
boolean variables and real one’s. A natural method to solve this problem is to enumerate
all boolean variables combinations. For each acceptable combination, the sub-problem is
solved. Solutions of sub-problems, for each acceptable boolean combinations, are com-
pared each others in order to determine the global optimum of the mixed-variables prob-
lem.

Such a method is too long to compute, that’s why, we propose a more efficient method.

Description

This method uses the generalized Bender’s decomposition that Geoffrion extended to the
non-linear case (Ref. 4). The mixed-variables problem is projected on the boolean vari-
ables space. It can be rewritten:

'minBv(B)
mt'navf(SV, B)
_ |88V, B)=<0
Ea ()= WE) = h(8V,B) = 0 Fa- () (5
wi
5ve REKN
Be V{0, 1}KN
V = {B/(g(8V, B)<0;r(8V,B) = 0)}

Eq. (5) is called the master problem.
To have more details on this method, refers to (Ref. 4, 5 and 6).
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Algorithm

The objective of the algorithm is to make iteratively the lower bound (of the global mini-
mum) increase and the upper bound decrease.

1.Select one acceptable combination of boolean variables B; it=1 (it is the current iteration)
2.Solve the sub-problem:

sV,
max, mingy, f(3V, B) + ug(8V, B) + Aa(3V, B) i
= p..t
Ve REN !
nmax

The solution is a new upper bound 1, of the global optimum of the mixed-variables problem.
3.A new constraint in the master problem can be added:

4.Resolution of the master problem:
minB'qB
N2 fV,B)+ g B+ ARGV ,E) V=Lt {ﬁmm
Be V{0, 13KN
V = {B/(g(8V,B)<0)}

which provides a new lower bound M,,;, of the global optimum of the mixed-variables problem
(concept of relaxation) and a new combination of boolean variables
50,20, , *E then stop, else return to 2.

T]min

Figure2 The algorithm to solve the mixed-variables problem

LINEAR AND DIFFERENTIAL OPTIMIZATION PROBLEM

The linear and differential station-keeping problem

In this section we consider a differential and linear model of orbital parameters. The
model is called differential since we consider the evolution of distance between a couple
of satellites and not the evolution of each satellite (absolute model will be treated in the
next section). Moreover the model is linear since constraints on distances between a cou-
ple of satellites are linear. In this case, the model Eq. (1) can be rewritten as follows:

The criterion can be one of the ones presented in Eq. (2).

Coverage constraints are the following:

k
k+1 _ [A40 k , I _ gl I _plsyl
ack 1| = aad+c, D avl<o,  wim  avl =8l Vi, -BlV);
1=0
. ©
o+ 1| - |r0 k : I _al ! Isyl
|adk l = adec, Y avkico,  wim  avl =gl vl -plev),
=0
L
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Assuming Aqik = qi+1k - qik whatever q = a, i, Q, o.
Coefficients C,, C;, Co¥,Co2,.ColCa¥,Ca®,Col are described in paper (Ref. 9). They have
been calculated in order to take into account J2, atmospheric drags, and thrust effects.

k ' . P A
ca=(k+1)-(cg-Aa?+c&-Az?) C§2=(k+1)-(C§-Aa?+C§2-At?)

Operational constraints are:
K-1 N
Y vl scons; vi  aa Y BFsm vk
k=0 i=1 ¢

awsplordlobnil) -0 o oo (o) o

This mixed-variables problem can be solved with the previous method, but the resolution
of the sub-problem Eq. (4) is required. The next sub-section is devoted to the resolution of
the sub-problem Eq. (4) that contains linear constraints, like for example Egs. (6) and (7).

Resolution

The sub-problem Eq. (4) with linear constraints can be solved by the linear simplex
algorithm (Ref. 8). However such a method implies the use of a software like Xpress and
doesn’t solve nonlinear problem with, for example, the criterion J;or J4. So we developed

a specific approach based on analytical calculations. This method is also suitable for non-
linear criteria.

An analytical approach. According to the theory of duality, Eq. (4) is similar to:

max, > o, AMingyL@V, 1 4) = f(8V)+ ul g(5v)+ AT - h(5V) (8)
The resolution of Eq. (8) provides the global optimum of the sub-problem Eq. (4).
The disadvantage of the equivalent problem Eq. (8) is that it contains two optimization
problems and more variables than the sub-problem Eq. (4). Indeed, the problem Eq. (8)
contains a maximization problem in 8V variables (2KN variables) and a minimization one
in p and A (Lagrange multipliers) variables (X variables, if X is the number of con-
straints). However, we found solutions to reduce the complexity of the equivalerit problem
Eq. (8).

1. How to suppress the minimization problem?

In fact, the minimization problem can be solved using analytical expressions. Indeed, if
we write stationnarity conditions Eq. (9) we can deduce relations Eq. (10) between 3V
optimal variables and other variables (Kuhn Tucker and Lagrange multipliers) of the prob-
lem.
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9 -
55y (V. B.1) = 0 ®

8V = 8V(w,A) (10)

The calculation of the Hessian matrix shows that the expression of 8V found with previ-
ous calculations corresponds to the global minimum of the problem.
So the solution of the minimization problem is analytical.
Note that:
- 18V] = J(5V)2, s0 ’ég_v (8V)2 = sign(8V)  if  8V=0
- Case of criterion J; or J,, the relation Eq. (10) is not found directly. The way to

obtain this kind of relation is to use the criterion J;+J3 or Jo+J3 instead of J; or J,.
This is not a problem since values of |3V| are about 10~ (km/s), so values of V)

are about 1078 (km/s) and we can conclude that (8V)2 «|8V]. That’s why criteria J;
or J; are similar to J;+J3 or Jo+J3.
After having substituted 8V by the expression found with Eq. (10) in the Lagrangian func-
tion, the new expression of the problem Eq. (8) is the maximization problem with Kuhn-
Tucker and Lagrange variables:

Eq. (8) =max, ; L(k, ) a

2. How to reduce the number of variables of the problem Eq. (11)?

It is stated that a Kuhn Tucker multiplier is positive if the constraint is saturated and null
otherwise. So there is no need to solve the problem with all Kuhn Tucker variables but just
the ones that correspond to a constraint that will certainly be saturated. Others Kuhn
Tucker parameters will be fixed to zero.

The way to find the variables of the problem is to plan what are the studied couples of sat-
ellites such that their relatives positions will have to be equal to the threshold.

When variables of the problem are determined, we can solve the problem Eq. (11).

If the criterion is J; or J3 we can write stationnarity conditions:

§-L(p, A)=0 if  p=0
a” 12)
L) = 0 VA

else, we must use a direct search algorithm (see next section) to solve the problem Eq.
(11).

Algorithm. Case where all the saturated constraints are known before the resolution of the
sub-problem, just one resolution of the problem Eq. (11) is needed. However, if we do not
know which are the saturated constraints, we propose the following algorithm:

1. it=1 (The variable it denotes the current iteration); A=0 and u=0
with these values calculate 3V=3V(u,\)
2. what is the most violated constraint?
The corresponding Lagrange multiplier becomes a variable W;, of the problem Eq. (11).

The problem Eq. (11) contains now, it Kuhn-Tucker variables + all Lagrange variables.
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3. Resolution of the equivalent problem Eq. (11) that provides optimal values of ; (j=1..it) and A

with these values calculate V=3V(p,\) ,
4. If the solution is feasible then it=it+1 and return to 2,else stop.

Figure 3 Linear station keeping optimization resolution

Example. In this paper we just develop calculations, case when the sub-problem is the fol-
lowing:

K-1N . 5

; k
ming 3 Y BrOVE)
4 it k=0i=1

k k K

0 .C . k . . =

AaQ+C+CE-C - Y [(k+1-DAVE] <¢,, Vi, Vk (I‘Bi) svft_o
1=0

The equivalent problem to solve is:

(max, w20, ARGy LAV, L U2 2)  with
K-1 N k
2
L(svruLHZyl) = z Z Svik +,J.1ik. Aa?+C§+C§-Ca. Z [(k+1—l)AV{Ci]"¢a
R k=0i=1 120
k k . . ; ]
9 k
tHy; - —AOL,-—C](;-C&.Ca. 2 [(k+1-DAVSI-0, ”‘i'{(l-ﬂ,-)'SV,-}
1=0

The gradient and the hessian matrix of the lagrangian function are:

K-1
__QTL(SV,”,A)= 28vk+ B Z G+ 1-k)ulf_, -ntf-p2f | +u2{)]+xf-(1-af.‘) =0
sV, —
£ : ] -
52
LSV, 1, A) = 250 B = Bk, C%,C )
2 a
28k
- k k
i is svk BK : ; ; i i ; }‘i'(l“ﬁi)
The new expression of 8V is §Vf =3 2 [G+1-B@Y_-nt]-p2]_ +p2])]+—5—
j=k

The new problem to solve is: max”l’ by 2 0, ;\L(Ml, U2, )

The gradient of this function is:
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B k k k k
N;L(”l’“?"’" = fA(l,r+1)—<p+k_62k<t5-(,+ 1= [ (1-8)+ 27, - (1-B/4 1]

K-1 k
152 : ey 1k k k_ ok k k
~B > ¥ (k+ 1=+ 1-)) wif_ | +ulf, -2ulf-p2f | -u2f, | +2u2f]

k=0Lj=0,j<t

By the same way, a—a——tL(ul, p2,2) and (_;%L(p.l, u2, 1) are calculated and the initial optimiza-
K2 N
tion problem has the same solution than the following linear system of equations:

Y—Q—L(ul,uz,x) =0  Vulix0
aulf

O LuLu2A) =0 Va2lz0
1
au2l’

d
—L(u1,u2,A) = 0
Er (11, 42, 4)

Conclusion

As a conclusion, the method presented in this section is very efficient since it can
provide the global minimum (optimal maneuvers needed to ensure a good coverage) just
resolving a linear equations system. This method can be applied to every station keeping
problems such that the criterion is one of the ones quoted in Eq. (2), and with linear con-
straints in OV.

NONLINEAR AND NON DIFFERENTIAL OPTIMIZATION PROBLEM

It can happen that perturbations on orbital parameters, makes the linear model not
precise enough. That’s why we propose a nonlinear model. This model is also absolute: all
orbital parameters of each satellites are independently considered. This will allow not
only to replace evenly satellites around the earth in station keeping, but also to correct
some satellites too far from the nominal constellation.

In this section we present this new model and methods that can solve this nonlinear
station keeping problem.

Nonlinear and non differential station keeping problem

Criterion can be one of the ones of Eq. (2). The following criterion that minimizes
the mass of consumption of ergol of all the N satellites of the constellation, can also be
used:
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Y, BEJ8VE)2 4 (8VE)?
N k=0

ming sy a(B,8V)  Jy(B,8V) = ¥, mg;-|l-e 8§ Isp (13)

i=1

\ y,

®my; is the mass of ergol left of the satellite i at the beginning of the station keeping cycle considered,

¢ g is the gravitational constant,
»Isp is the specific impulsion.

Coverage constraints are the following:

i = 3.98600641014m> /52
k+1_ k2 ok 25 vk
ai+ = a; T-(ai) 5V“. Fe 3[] 2
" , =3 V2%
1/2 with 4
k+1 ak a,= 6378.140km
lAai |S¢a i'l‘"'l = i£‘+ cosat - = -SV{;‘. 3
lAik+ 1l<¢ ' ’ J,= 10826626810
lk+l ! with a2 (14)
lAai | 0q . Fcosik+1 . ak)
k+1 _ ok sin o0 ‘% k
k+1 QT =g A "8V
lAQi lsq>g ak+1 snik i
k1o gk | g gkt 1y/2 F(4 ok 1] singt "lk)l/z k
oaf*tl = ol u- (@t - “At+ . SVE.
i i i g+ 1772 J tani{.‘ Ji wi
1
) o = 0 or 7 to control i
assuming that
o = 7|/2 or 31/2 to controlQ

Operational constraints are the same as in the previous model Eq. (7).
Constraints on absolute position of all satellites: satellites must not be too high or
too low and must be close enough to the desired orbit inclination.

a Sa{."'Sa

min max
(15)

i . SszSi
i ~ ‘max

To balance the consumption of satellites, we can use either a new criterion (J5) or

new constraints that will penalize the use of satellites for which the consumption of ergol
is more important than for the others.

K-1N K-1
= k k2 k {2 = k k2 k 12
IsB8) = 3 3 (Pi BE-JOVEZ+(@VED?) Py = Conspreiit Y (Bz NOVRTHEVL) )
k=0i=1 k=0
Consprevi. iis the previous consumption of the satellite i
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Resolution

This sub-problem can be solved with a direct search algorithm.

A direct search method (Hooke and Jeeves) does not need the calculation of the gradient,
but only a direct evaluation of the criterion on different points. To take into account con-
straints, the use of exact penalty functions is required:

(SP) = ming, f(8V) + C| - max(0, g(8V)) + C, - max(0, |h(8V))) (16)
Such a method provides the global optimum of the sub-problem Eq. (4) if the optimal val-
ues of penalty coefficients C; and C, are well evaluated. It is difficult to get analytically
exact value of penalty coefficients. However, there exists a way to get acceptable values
for coefficients C; and C,, by solving in a first step the problem in the linear case.
Assuming f(x) is the objective function to minimize, the Hooke and Jeeves algorithm is
the following (Ref. 7): R

x. is the initial point

k k-1 _ k
p-Calculate x; = 2x,” " ~x,
Phase
k+1 k
X0 =X,

i ]
FOD<fEETY
YES NO

Phase
If f(x*)> f(5) Then A, =yA, i=1,n

Stop criteria
YES , NO

Phase
Fori=1,n
calculate x = xf_l +Ae;
If f(x)<f(xf_l) then x{-‘ =x
Else
calculate x = xf_ 1—Ae;

If f(x)<f(xf_,1) then xf = x else xf = xf_l

' Figure4 Hooke and Jeeves algoﬁthm
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The satellite replacement problem

There exist two kinds of failure for the satellite.
1. There is no ergol left, to make maneuver, but the satellite is able to work.
While its trajectory is not too far from the nominal trajectory, the satellite can be consid-
ered for the coverage study, but not for station keeping maneuvers.
2. The failure is a mechanic or an electronic’s one: the satellite is thrusted to a higher
orbit, and cannot be considered any more for the study of coverage of the constellation.
This kind of failure is seldom predictable. When it happens, there are 3 solutions:
1.The redundancy makes the coverage of the constellation good enough, not to use
another satellite, but maneuvers can be done to replace satellites evenly around the
earth.
2.The satellite can be replaced by a stand-by satellite located on orbit. In this case, the
spare satellite can be in the same orbital plane but at a lower altitude than the failed satel-
lite (the altitude, and the mean anomaly have to be corrected), or in another orbital plane
(the altitude, the mean anomaly, the RAAN and perhaps the inclination have to be cor-
rected).
3.The satellite can be replaced by a satellite stored on the ground.
Case the satellite has to be replaced, if the failure has not been predicted, there’s a
constraint on the time length of the replacement, in order to minimize the time of damaged
coverage (with gap in coverage).

Optimization problem to replace a satellite.

The solution consists in using the drift of the spare satellite in order to minimize the total
maneuvers. Case when the spare satellite is located in the same orbital plane but at a lower
altitude than the failed satellite, just the altitude, and the mean anomaly have to be cor-
rected. That’s why only, in-plane maneuvers and drifts are necessary to be controlled.
The optimization problem that consists in minimizing the total maneuvers has two sorts of
variables: in-plane maneuvers (either just maneuvers of the spare satellite, or maneuvers
of this satellite and all others satellites of the constellation) and the drifts time length.
Constraints are the objective location of the spare satellite, and the maximum time length
replacement of the failed satellite. Equations of evolution are non linear, since the spare
satellite is first too far from its objective location in the constellation.

This model can be extended to the case when the spare satellite is not in the same orbit
plane than the failed satellite.

Conclusion _

This model can be used to determine optimal maneuvers needed to replace a failed satel-
lite. However the way to choose the spare satellite to replace the failed one, has to be mod-
eled. This will certainly be useful to the study of the design of a constellation, for
choosing the location of spare satellites.

Conclusion

As a conclusion, we can say that this new model is very interesting since it can solve
the most complicated case: nonlinear mixed-variables problem. It’s more precise than the
linear one. It allows to take into account various constraints: on the position (relative or
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absolute) of satellites, on the consumption that can be limited and on the balanced con-
sumption.

This model can also be used to calculate optimal maneuvers needed to replace a
failed satellite. A first approach to find optimal maneuvers has been presented. However,
the global problem, including the choice of the spare satellite, has to be stated.

NUMERICAL RESULTS AND COMPARISON

These numerical results concern constellations such that random perturbations have
been added to initial values of orbital parameters of all the N satellites.

Comparison of both methods to solve the mixed-variables problem

Methods described (enumeration and exact method splitted on the basis of the gen-
eralized Bender’s decomposition) have been used to solve the mixed-variables station
keeping problem.

Parameters of the example are the following: N=6 satellites, K=2 steps, M=3. In this
example just the mean anomaly is corrected (6V,=0), the criterion is J3, and constraints
are linear. The sub-problem is solved using the analytical method Eq. (12).

The value of the global optimum, and the computing time of each method are pre-
sented in next table. The boolean combination found is obviously the same with both
methods.

Table 1
COMPARISON BETWEEN ENUMERATION AND EXACT METHOD.
Type of result Exact method  Enumeration
Cost (meter/sec)? 2.66 107 2.66 10”7
Computing time (Sparc 5) 6 min 26 12 min 49

This example and many others confirm that the exact method provides the global
optimum in a shorter computing time than the enumeration does.

Comparison of analytical method and direct search algorithm

In this example, the mean anomaly of a constellation (such that N=16 satellites, K=2
steps), is corrected (8V,=0). The criterion is J3, and constraints are linear.

We solved this station keeping problem using respectively these three methods:
Algorithm 1 finds which constraints are saturated, Figure 3. The problem Eq. (11) is
solved by the analytical method, i.e. the resolution of the system of equations: Eq. (12).
Algorithm 2 also finds which constraints are saturated, Figure 3. The problem Eg. (11) is
solved by the direct search approach, i.e. the Hooke and Jeeves algorithm.

Algorithm 3 solves the problem Eq. (11) with all p and A variables, using the Hooke and
Jeeves algorithm.
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Table 2
COMPARISON BETWEEN THE ANALYTICAL AND DIRECT SEARCH METHODS

Type of result Algorithm 1 Algorithm 2  Algorithm 3
Cost meter/sec - meter2/sec® 2,214-4.082 2,214-4.082 2,214 -4,082
Computing time (UltraSparc) 6 sec 1h05’ 1h40’
Number of optimization variables 11 11 96

Values of cost presented in table 2, proves that the direct search (Hooke & Jeeves)
algorithm can provide the global optimal solution of a station keeping problem, even for
an important number of variables. All maneuvers found, with the three methods, have the

same value with both methods about +,_10‘6 m/s.

Comparison of linear and nonlinear models
Let us consider two examples with basic parameters N=20 satellites, K=3 steps, alti-

tude=103 meters, inclination=53°, Number of plane=5. The mean anomaly and the incli-
nation are corrected, since we consider J2 effects. So in and out of plane maneuvers have
to be calculated. '

Example 1: parameters of the constellation are perturbed: random perturbations
have been added on orbital parameters of each satellite such that
ca=103 meters, 0i=8.10'4°, oa=10'1°, cg=10‘3°.

Example 2: parameters of the constellation are more perturbed:
0,=2.10% meters, 6=1,2.107°, 6,=2.1071°, 5g=107%.

We solved these two examples with the linear model and using the analytical
" method. Optimal and feasible maneuvers found for each example have then been intro-
duced in the nonlinear model. The first column of the next table presents thresholds that
respectively |ai] and |Aa| must not exceed. The two remaining columns present the greatest
values of |Ai| and |Ac], provided when optimal and feasible maneuvers found with the lin-
ear model have been introduced in the nonlinear model (for initial orbital parameters of
examples 1 and 2).

Table 3
COMPARISON BETWEEN LINEAR AND NONLINEAR MODEL, EXAMPLES 1 & 2.

Threshold example 1 example 2
Ai maximum degrees 0.001 0.001 0.001

Ao maximum degrees 0.1 0.134 0.168

These results show that the linear model can be used and provides good results.
However, when constellation parameters are far from the nominal positions, the linear
model is not precise enough and the optimal linear solution can violate constraints.
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CONCLUSION

In this paper, a new robust and efficient method that can solve the linear station
keeping optimization problem has been presented. This method provides the global opti-
mum of the problem in a very short computing time. We also presented a nonlinear station
keeping optimization problem and an algorithm to solve it. These models and methods are
able to solve a large range of station keeping optimization problems: linear or nonlinear
evolution model of orbital parameters, corrections of relative or absolute positions of sat-
ellites, operational constraints, constraints on the consumption of satellites, constraints on
the consumption balancing of all the satellites, choice of the objective function that can
minimize the sum of complete maneuvers or just the sum of components of maneuvers,...

Several researches will be devoted to the following items:

A hybrid method mixing both analytical approach and direct search method can be inves-
tigated in the case where the problem has both linear and nonlinear constraints.
Moreover, the choice of a stand-by satellite to replace a failed satellite has to be stated,
and an optimization method has to be developed to solve this problem.

Researches on constellation design are also developed and will certainly provide informa-
tions on constraints of the station keeping problem.
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SCHEDULING TECHNIQUES FOR A CONSTELLATION

VISIBILITIES

Jean-Claude Agnése’, Pascal Brousse'

Many conception or scheduling problems of space systems are based on
combinatorial optimization techniques. In this paper, we describe the
application of these techniques to the resolution of the scheduling
problem appearing in the choice of visibility windows of satellites of a
constellation.

The problem we try to solve is described by:

- given a set of tracking antennas,

- one antenna can only follow one satellite at a time and needs a certain
delay to allow reconfiguration before being able to track another satellite,
- satellites must all be tracked more than a certain time every day,

- as much as possible the load of the antennas must be equal.

Among all the visibility windows, the problem consist in choosing one set
that satisfies theses constraints at best.

We describe several methods initially developed in the framework of the
scheduling problem of imaging for the future Spot-5 satellite:

- exact methods like the so called «Russian dolis» based on a Depth
First Branch and Bound algorithm to find an optimal solution at the price
of a sometimes very large computation time,

- approximate methods like «greedy search» (iterative or random) to find
a good solution with a very short computation time.

INTRODUCTION

When designing a constellation of satellites, one of the many problems to solve
consists in minimizing the ground station network taking into account the great number

of satellites to track.

The needs can be summarized as follows:

All satellites must be regularly tracked with a minimum duration for telemetry

(for instance 5 minutes every 36 hours).

This regular control must be compatible with a more important control on

satellites in contingency (for instance a visibility on every orbit).
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When a problem occurs on a satellite, it is often necessary to reload the work
plan of the whole set of satellites of the constellation within a short delay (for
instance this can lead to the fact that half of the constellation must be visible
within 3 hours and the other one within 6 hours).

To these constraints induced by exploitation and station-keeping can be added
needs in visibility due to operations during the positioning phase following multiple
launches and to de-orbiting operations.

Dirhensionjng the ground stations network for the control of a constellation
requires then the use of efficient scheduling techniques to reach an optimized result.

PROBLEM MODELING

The scheduling problem
The visibility scheduling problem can be informally described as follows:

Given a set of satellites of the constellation to be tracked;
Given a set of antennas achieving tracking operations on these satellites;
Given a reference time interval;

Given a set S of visibility windows corresponding to the different ways to track
a satellite by a particular antenna on the reference time interval; each window is
assumed to meet the requirements (RF visibility, minimum duration...);

Given a weight associated to each window which can be the result of an
aggregation of several criteria like the importance of the satellite... typically for
the standard problem of finding a visibility window for each satellite, the
weight will be uniformly 1;

Given a set of hard constraints which must be satisfied:
- Only one visibility window needed for each satellite;

- Non overlapping (one satellite tracked at a time) and respect of a minimal
transition time (reconfiguration delay) between two successive tracking on
the same antenna;

The problem is to find a subset S’ of S which is admissible (hard constraints
met) and which maximizes the sum of the weights of the windows in S’ (i.e. the
number of satellites tracked). In addition, the best between two solutions,
provided the fact they reach the same maximum will be the one which leads to
the most equal load of the antennas and the most uniform repartition in time.

This problem belongs to the class of the Discrete Constrained Optimization
Problems and more precisely is a Valued Constraint Satisfaction Problem'?.

VCSP is an extension of the CSP framework where each problem can be
characterized by:
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A set V of variables: a finite domain of values is associated to each variable and
defines its possible instantiations;

A set C of constraints: each constraint links a subset V’ of the variables and
defines forbidden combinations of values for the variables in V’;

A valuation set E (to valuate constraints and assignments) with a total order (to
compare two valuations), a minimal element 1 (to represent constraint
satisfaction) and a maximal one T (to represent violation of a hard constraint); -

A valuation function associating to each constraint ¢ in C an element in E
which represents the importance of the satisfaction of c;

An aggregation operator & (to aggregate constraints valuations) which respects
commutativity and associativity, monotonicity relatively to the order, and for
which 1 is the identity element and T the absorbing one.

Given an assignment A of all the problem variables, the valuation of A is the
aggregation by the operator ® of the valuations of all the constraints not
satisfied by A.

The standard objective is to produce an assignment with a minimal valuation. It is
an NP-hard problem according to the complexity theory and then its worst-case
complexity grows at least exponentially with the problem size.

Modeling as a Valued Constraint Satisfaction Problem

The modeling of the visibility scheduling problem within the VCSP framework
consists then in:

Associating a variable v to each visibility window w which represents the
possibility to track a specific satellite with a specific antenna; this window is
defined by a time interval during which the satellite is in visibility of the
antenna.

Associating to v a domain d of values: d={0,1} corresponding to the two

* possibilities to achieve (1) or not achieve (0) the tracking of the corresponding

satellite on the associated antenna during this particular visibility window; the
special value O corresponds to the possibility of not selecting w in the schedule;

Associating to v a unary constraint forbidding the special value 0 with a
valuation equal to the weight of w (the penalty for not selecting w);

Translating as n-ary constraints with the maximal valuation T the requirement
of tracking each satellite only once;

Translating as binary constraints with the maximal valuation T the constraints
of non overlapping and respect of the minimal transition time between two
successive tracking on the same antenna (reconfiguration delay);

Using as valuation set the set of integers between O (for 1) and an integer
greater than the number of satellites to track (for T);

47



® Using as order the natural order on integers and as aggregation operator the
usual + operator.

With this modeling the valuation of an assignment A is equal to T when a hard
constraint is not satisfied or equal to the sum of the weights of the rejected windows
when all the hard constraints are met. As it is always possible to produce an assignment
where all the hard constraints are satisfied (for example by rejecting all the visibility
windows), finding an assignment of minimal valuation is equivalent to finding an
assignment satisfying all the hard constraints and minimizing the sum of the weights of
the rejected windows i.e. the number of non tracked satellites in our case.

Except the unary constraints associated to each variable (the only ones which can
be violated), all the other constraints are hard (valuation equal to T). The valuation set

and the aggregation operator induce an additive VCSP which is among the most difficult
ones to solve.

EXACT METHODS

Exact methods are systematic tree search procedures. The root of the tree, starting
point for the search, is the empty assignment. At each node, the set of variables is
partitioned into a set of instanciated variables and a set of uninstanciated variables. The
children of a node corresponds to all possible extensions of the current assignment by
instantiating a new variable. The leaves of the tree correspond to all the possible
assignments. Variable instantiation ordering and value ordering can be used to guide the
search. These methods are called exact because they are able to find an optimal solution
provided that no running time limit is set. To avoid producing and evaluating all the
possible assignments, optimistic evaluations of the partial assignments are used.
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Linear Programming in Integer Numbers

The first idea which comes to mind is to use commercial software. The problem
can be seen as a linear programming problem in 0-1 numbers. So the modeling has been
first implemented using XPRESS.

On a typical problem with a set of 870 initial windows, it has led to more than
380000 constraints. The only preprocessing took more than 1 hour on a SUN SS30
workstation and was very long to solve.

Thanks to previous studies on the scheduling of an earth observation satellite,
specific methods developed in this context have been adapted to the visibility problem.
They are described below.

Depth First Branch and Bound

The most frequently used algorithm is the Depth First Branch and Bound which can
be viewed as an extension to the VCSP framework of the backtrack algorithm widely
used within the standard CSP framework.

Let us assume that the problem is to find an assignment with a minimal valuation
less than o and greater or equal to B (we suppose that it is known by other means that no
assignment with valuation less than P exists). By default a=T and f=L1. The mechanism
consists in performing a depth first search to find a complete assignment with a valuation
less than o This bound initialized to oy strictly decreases during search. Each time a
complete assignment with a valuation greater than or equal to the current bound is
produced, a backtrack occurs. The algorithm stops when a complete assignment of

valuation equal to P is found or when no complete assignment of valuation less than the
current bound can be found. '

This algorithm presents the following advantages:
* It only requires a limited space linear with respect to the number of variables;

® As soon as a first assignment with a valuation less than o is found, the
algorithm behaves like an anytime algorithm: if interrupted, the best solution
found can be returned and its quality cannot but improve over time.

The main problem is that a depth first search can easily be stuck into a portion of

the search space where no optimal assignment exists because of the first choices made
during the search.

Russian Dolis

This algorithm can be seen as an hybridization of Dynamic Programming and
Branch and Bound. As it sequentially solves nested problems, it has been called Russian
Dolls.

Given a problem with n variables, the method, which assumes a static variable
ordering, consists in performing n searches, each one solving with the standard Depth
First Branch and Bound algorithm a subproblem limited to a subset of the variables. The
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i problem is limited to the i last variables. Each problem is solved by using the same
variable ordering, i.e. from variable n-i+1 to n. The optimal valuation is recorded as well
as the corresponding assignment. They will be used when solving the next problems to
improve the valuation of the partial assignments and thus to provide better cuts: in other
words, on the sub-tree issued from i you cannot find a better valuation than the one found
when solving the i+1™ problem

This method which can be surprising since it multiplies by n the number of
searches has proved to be very efficient. The main explanation is the quality of the
valuation of the partial assignments provided by previous searches.

APPROXIMATE METHODS

This section presents methods which aim at providing good solutions but cannot
prove optimality. The counterpart is their efficiency in terms of computation time which
becomes polynomial in the problem size.

Greedy search

Visibility windows are first heuristically sorted. Then a solution is built by trying to
insert each window in the current solution in the order of the sort and rejecting it if it is
impossible. The algorithm is a one pass process and never comes back on its choices. The
quality of the solution found greatly depends on the sort performed at the beginning. In
the visibility problem, the best heuristic lies on a chronological order.

Iterative Greedy Search
A way to improve the solution provided by this algorithm is to work in two phases:

® The first phase deals with the computation of a feasible solution using a greedy
algorithm;

® The solution (result of the first phase) is then improved by a perturbation
method based on an iterative inhibition of the selected windows. For each
selected window, it consists in rejecting it and computing a new schedule from
this point (the portion of schedule from the beginning up to that window being
unchanged). If a better solution is found, the window is definitively rejected
and the current solution updated else it is definitively selected.

This algorithm is a combination of greedy search (first phase) and limited local
search (second phase).

Random Greedy Search

Another way to more widely explore the search space is implemented in the
Random Greedy Search:

® A upper loop modifies the set of windows in input, inhibiting some of them in a
random way. The inhibition consists in randomly suppressing some of the
visibility windows associated to a same satellite.
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® The greedy algorithm is then used to compute a solution from this modified set.

This process is repeated as well. It always improves the solution found by a simple
Greedy Search but there is no guarantee to find the optimal solution.

IMPLEMENTATION

In order to standardize the computation process of the different algorithms, a set of
basic functions as been implemented as shown on Figure 1. This functions deal with the
basic manipulations necessary to build a solution and verify it. So scheduling algorithms
can be easily interchanged.

They are based on two main data structures representing :
¢ The current assignment on which algorithms work and try to insert the different
visibility windows;

® The best assignment which describes the best solution found.

Visibility Visibility
compatible ? €7

Figure 1: Basic functions of the scheduling algorithms

RESULTS

On the next figures we give an example of the output of the scheduling process for
64 satellites (2 in contingency) tracked by 8 antennas in 4 stations on a period of 4 hours.
Label C is for satellites in contingency which must be tracked as much as possible
without holes of visibility longer than 2 hours. Label N is for specific satellites which
must be viewed within the 2 first hours.

The algorithm has found a visibility for all satellites (included the one in
contingency). The load of the different stations is almost equal. The entire process did not
took more than a few minutes on the SUN SS30 workstation.
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Elements of comparison between algorithms

Below, we give elements of comparisons between the different algorithms.

Algorithm Notes Quality | CPU time

Greedy Search Often non optimal but very low * *kk
CPU time

Iterative Greedy Search * bl

Random Greedy Search | Best tradeoff *k ok

Linear Programming in|Optimal solution, very long CPU| *%* -

Integer Numbers time, large memory requirements

Russian dolls Optimal solution but often| *¥%* -

rohibitive CPU time
CONCLUSION

Exact methods like Russian Dolls or Linear Programming have the advantage to
provide optimal solutions and to prove this optimality. Nevertheless they often fail on
large size problems or in presence of high arity constraints in the sense that they cannot
reach a solution in a reasonable computation time. When they fail, the systematic order
they use to explore the search space prevents them to produce good quality solutions.

Approximate methods, like Random Greedy Search have the advantage to provide,
within a limited time, good quality solutions thanks to their opportunistic way to explore
the search space. But they have the drawbacks to provide no guarantee about this quality

- ' when some satellites remain untracked after a search for it is impossible to say that it is
because the problem is unfeasible or because the algorithm has not found the solution.

In practice, these algorithms are intensively used for mission analysis in order to
dimension the ground station network. When the constellation is operational, they will be
integrated in the ground segment to plan the satellites tracking operations, both in
nominal case and to reconfigure the constellation when some of them fall in contingency.
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The direction to develop small low cost spacecraft has led many scientists to
recognize the advantage of flying spacecraft in constellations and formations to
achieve the correlated instrument measurements formerly possible only by flying
many instruments on a single large platform. Yet, constellations and formation
flying impose additional complications on orbit selection and orbit maintenance,
especially when each spacecraft has its own orbit or science requirements.

The purpose of this paper is to develop an operational control method for
maintenance of these missions. Examples will be taken from the Earth
Observing-1 (EO-1) spacecraft that is part of the New Millennium Program
(NMP) and from proposed Earth System Science Program Office (ESSPO)
constellations. Results can be used to determine the appropriateness of
constellations and formation flying for a particular case as well as the operational
impacts. Applications to the ESSPO and NMP are highly considered in analysis
and applications.

After constellation and formation analysis is completed, implementation of a
maneuver maintenance strategy becomes the driver. Advances in technology and
automation by GSFC’s Guidance, Navigation, and Control Center allow more of
the burden of the orbit selection and maneuver maintenance to be automated and
ultimately placed onboard the spacecraft, mitigating most of the associated
operational concerns. This paper presents the GSFC closed-loop control method
to fly in either constellations or formations through the use of an autonomous
closed loop three-axis navigation control and innovative orbxt maintenance
support.  Simulation results using AutoCon™ and FreeFlyer™ with various
fidelity levels of modeling and algorithms are presented
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INTRODUCTION

Missions such as those of the Earth System Science Program Office (ESSPO) and New
Millennium Program (NMP) emphasize the use of multiple spacecraft to collect Earth-imaging scientific
data.!? These programs consists of multiple spacecraft in various orbits which include the Earth Observing
System’s EOS AM-1, EOS PM, EOS CHEM, and the EOS Laser Altimetry (ICESATs) missions. Other
related spacecraft such as the next generation of Landsats are also considered part of this initiative. The
EO-1 spacecraft of the NMP also is using the ESSPO requirements to promote technologies and correlated
measurements. The orbit characteristics of several of these missions presented in the following table seem
very similar in orbital mechanics terms, however the science goals are varied to achieve a wide range of
Earth observations in the areas of ground imaging, atmospheric research, and ice sciences. These various
spacecraft form a constellation of related spacecraft, potentially taking coincident or sequential
measurements of the same location on the Earth’s surface, or correlating measurements of related
atmospheric phenomena. The reasons for these temporal measurements range from cross-calibration of the
_ instruments as follow-on spacecraft are launched into the same orbit to sequential measurements made by
instruments on spacecraft in different polar orbits.

Table - 1 Mission Characteristics

EOS-AM EOS-PM Landsat-7 EO-1
Mean Altitude 705 km 705 km 705 km 705
Inclination 98.2 98.2 98.2 98.2
Repeat Cycle 16 days 16 days 16 days 16 days
MLT 10:30 am (desc) 1:30 pm (asc) 10:00 pm (desc) N/A

+ 15 min + 15 min + 15 min
Gndtk control +20km +10km +5km + 3 km wrt L-7
Ground track WRS or previous WRS WRS Landsat-7 track
Reference grid repeat cycle track
Sun- Y Y Y Y
Synchronous?
Frozen? Y Y Y Y
Navigation TONS Ground/TDRS Ground/TDRS GPS
Constellation/ Constellation with Constellation Constellation with Formation Flying
Formations Landsat-7 with AM, L-7 EOS-AM with Landsat-7
Constraints
ELV ATLAS Delta Delta Delta
Launch Date Oct., 1998 Dec., 2000 Dec., 1998 May 1999

As these programs mature, the maintenance of a constellation or formations of spacecraft drives

the need for further analysis regarding the design of the spacecraft orbits. Analysis regarding the impacts of
a design on subsequent missions and their requirements becomes more important and has highlighted
challenges in determining the feasibility of proposed solutions to scientific questions, in accounting for
monetary constraints, and in accommodating new technologies which have also posed challenges in the
areas of orbit control and temporal observations. Extended analysis has also been driven by the imposition
of constellation requirements on future low Earth orbiting spacecraft.

FORMATION AND CONSTELLATION DESIGN DRIVERS

Design drivers for formations and constellations come from both scientific and technological
disciplines, and include:***

¢  Small spacecraft flown as virtual platforms or ESSPO mission segments to meet instrument or scientific
requirements.

e Navigation and communications requirements.

®  Spacecraft and instrument operational considerations.
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Constellations and formations offer the advantages of reduced launch risk per instrument, the
separation of instrument and spacecraft bus schedules, and the implementation of new technology.
However, the use of several spacecraft instead of one large spacecraft bus also has some disadvantages
when coincident or sequential observations or calibration of instruments are reqmred The use of one
instrument’s imaging data by another for planning, near-real time operations, or ground data processing can
become a significant driver.

The proposed use of ground stations instead of the space network for communication support is
another consideration in constellation and formation design.” ESSPO spacecraft are considering the use of
X-band direct downlink for scientific data return. In order to assure that direct downlinking of data from-
numerous spacecraft will be possible without overlap in viewing from the ground station, an analysis was
performed of the separation in a constellation which would minimize science data collection concerns.
Therefore, in considering the maintenance of a constellation or formation, fuel budgets must be analyzed.
The goal is to minimize the required fuel for constellation maintenance by combining this maneuver with
_ other maneuvers already planned to meet other mission requirements such as ground track control.

Navigation system selection also will impact the choice and design of constellations and
formations not to mention the impact to the available onboard computer hardware and Attitude Control
Systems (ACS). Recently, GPS has come to the forefront for real-time onboard navigation, but other
technologies exist which may compliment the spacecraft hardware and provide a robust real-time navigation
system. The technology of cross-links between spacecraft for both data communication and relative
navigation has yet to be fully explored but for a true closed-loop design, a real-time cross link must be
available.

Orbit mechanics and the need to meet all mission orbit requirements place a great burden on the
selection of the constellation and its maintenance. For example, most EOS missions have both ground track
and mean local time (MLT) of node crossing control requirements. These orbital requirements must be met
in order to successfully collect scientific data. Also, physical impossibilities will inhibit wishful thinking in
the selection of some constellations or the achievement of the formations directly from the launch vehicle.
Some constellations may take a long duration to establish and can impose increased constraints on the
launch vehicle to meet injection targets. The operations associated with these maneuvers may also become
a driver if the instruments are required to physically change their modes, such as covering up optics during
maneuvers to protect against contamination or sun impingement.

Formation And Constellation Definitions

‘While often used together, achieving and maintaining a constellation are independent concepts
from that of formation flying.*” A constellation is defined as two or more spacecraft in similar orbits that
perform separate control of their orbits. They may provide global or localized science data, but mostly in a
post-processing sense. They do not provide real-time communications between spacecraft. In general, a
constellation could contain spacecraft that have no hard requirement concerning maintenance of a relative
position. For a large difference in orbital anomalistic angles, relative cross track separations vary over the
orbit since the spacecraft are really in different orbit planes. This orbit plane difference in nodal crossing is
used as an advantage for constellation maintenance to meet sequential observations by accounting for the
Earth rotation. The concern is that the result of relative drift in the along-track direction between two
spacecraft yields a different sub-satellite point, thereby impeding the coincident observation requirement on
every orbit. However, for the NMP problem, in order to achieve a higher percentage of coincident
observations, the spacecraft have the additional requirement to maintain a formation within the
constellation.

Formation flying is an orbital operations concept design in which a spacecraft mamtams a
predetermined trajectory relative to a reference position without making a physical attachment. ’ This
reference position may be occupied by another spacecraft if desired. Consider two spacecraft placed in the
same orbital plane and at the same altitude, with an initial anomaly separation angle small enough that
atmospheric density and gravitational perturbations can be considered constant. These spacecraft will be
similarly affected by atmospheric drag and by the gravitational potential field of the Earth provided that
they have identical ballistic praperties. Ballistic properties are defined here as the ratio of mass to the
product of frontal area and coefficient of drag. If the spacecraft are separated in the radial direction, and the
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respective ballistic properties are different, their orbit velocities are also different, and one spacecraft (the
formation flyer) will appear to drift relative to the other (the reference flyer). The drift is most apparent in
the along-track (orbital velocity) direction. The approach for determining the formation flying maintenance
was formulated using basic orbital mechanics and formation flying concepts which are derived from Hill’s
or Clohessy-Wiltshire Equations of motion. ®

DESIGN METHODOLOGY

To consider the methodologies of maintaining constellations and formations, an example from
each is discussed in detail. The first methodology discussed is the constellation, '

Constellation Design and Maintenance

The mean anomaly separation between spacecraft is used as the basis for our analysis. While some
~ separations may seem exceedingly large, it is determined by the science temporal requirement for
coincident/sequential observations and by communication requirements. Also, for spacecraft to observe the
same location, their orbit planes must be oriented to account for the rotation rate of the Earth during the
time lag between one spacecraft seeing the location and the other spacecraft passing over the same location.
To characterize the definition of location, it is assumed that the sequential instrument fields of view are
large enough to have an imaging expectancy of at least 80%.° A first order approximation to analyze the
constellation was completed based on orbital mechanics found in any textbook. While high order
Geopotential and third body effects can be ignored in the analytical results, they should be considered when
verifying results. These values were verified in high order simulations using AI Solutions’ AutoCon™, or
FreeFlyer™. 1° The analysis of constellations was based on information in Table-1 and on the following
assumptions and requirements:

The spacecraft must maintain a minimum true anomaly separation. :
All spacecraft must meet their groundtrack requirements, therefore, maneuvers must be
performed at intervals defined by the atmospheric conditions and not the constellation
maintenance.

e The range of spacecraft ballistic coefficient differences are no larger than 15% with a
baseline of 50 kg/m?.

¢  Atmospheric conditions are considered to be relatively uniform over the separation in the
orbit planes and between spacecraft.

¢ The maximum separation in radial altitude to meet the maximum ground track
requirement is 2 km (+/~ 1 km about a reference altitude).

Other mission orbit requirements place additional constraints on the constellation maintenance.
These are ground track control, frozen orbit control, inclination control, mean local time control, and
repeating orbits. The principal driver of these is ground track maintenance, which has the most stringent
orbit requirements. To meet science requirements for Earth observing instruments, the repeating
groundtrack of the sub-satellite must be controlled. Ground track maintenance is performed by varying
elements of the orbit to ensure that the orbit repeat cycle is met and reference points at the equator are over-
flown each orbit. The ground track accuracy is maintained by changing the orbital nodal period with
respect to the fixed Earth rotation rate. The nodal period is adjusted by changes to the semi-major axis.
The number and times of the maneuvers to accomplish this are determined by atmospheric conditions. For
ESSPO spacecraft, this maneuver frequency varies between one month and six months. Frozen orbit
control can be accomplished through strategic placement of the ground maintenance maneuvers at no
additional fuel cost. The other orbit parameters are rarely adjusted and are not considered here.

Constellation Targets

To maintain the constellation, maneuvers must be performed to control the drifting between
spacecraft due to the differential decay rates. The targets used for constellation maintenance are dependent
upon the individual requirements of the science goals, operations, and constraints. An example of the
targets used most often for polar orbiting ESSPO type missions are semi-major axis (sma) and eccentricity.
One can maintain an ESSPO constellation by adjusting these parameters to control the individual orbit or to
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maintain the constellation separation. A change to the sma will adjust the drifting in an orbit period
between the spacecraft while the eccentricity can adjust the orientation of the relative orbit elements such as
argument of periapsis. The sma can be targeted to meet the ground track requirements and to maintain the
constellation.

Maintenance Using Ground Track Control

If one follows the ground track control theme then constellation maintenance is reduced to meeting
the mission requirements. The ground track control is realized by a change to the sma and the adjustments
made to this parameter will result in a differential drift in the relative mean anomaly. There is no control of-
the magnitude of the drift between the spacecraft as the drift distance is dependent upon when the
maneuvers are performed for the ground track control. The targeted sma is the required sma to maintain the
mission ground track which can be computed via differential correction methods in FreeFlyer .

. Maintenance Using Mean Anomaiy Control

If one follows the differential mean anomaly rate theme, one can adjust the time it will take to
transverse a delta mean anomaly between the spacecraft. The selection of the sma of the maneuvering
spacecraft can be used as a target to bring about a controlled drift over a given delta anomaly in a given
time. The derivation of this sma target is simply an algebraic expansion of the mean anomaly rates as
shown below.

The mean anomaly difference over time can be computed as,

= £
AG=(n,—n,)t where ™= \/:11:
n = fz;

with a, = mean sma, a,,, = initial mean sma, a,y = sma decay rate, |i=gravitational constant, n = mean
motion, and t= time.

Using a desired angular difference and time, this can be expanded to,
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Solving for the target semi-major axis, az , and using an assumption that the decay rates are subject only to
the differential ballistic coefficients yields,
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where,

ayy ='au *(Bc,/Bc,)
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Ground Track Control Results

To consider a sample scenario, this analysis assumes that ground track maintenance starts with one
spacecraft half-way through the ground track maintenance cycle to account for the maxiroum radial
separation (and therefore maximum in-track velocity difference) over time. Orbital decay rates were
calculated at the solar flux maximum, based on +2 sigma predictions. If the ballistic coefficient (B) is 50
kg/m’, the decay rate at 705 km at the beginning of the mission (June 1998) is approximately 0.0028
km/day. If the B, equals 40 kg/m’, the decay rate is approximately 0.0034 km/day. Decay rates for the -2
sigma solar flux values can be orders of magnitude less (e.g. B.=50kg/m?, decay rate ~ 0.0003 km/day four
years later) and could give significantly different results. The ground track maneuvers periodically change
the relative semi-major axes of the spacecraft which results in a switching of the sign of the delta mean
motion.

The maintenance of the ground track results in a repeating and somewhat uniform increasing and
decreasing of the mean anomaly (along-track distance) between the spacecraft as maneuvers change the
direction of the differential mean motion. The observed difference in the mean anomaly of each spacecraft
varied by approximately +/- 15° over a several month. This difference suggest that ESSPO type separation
angle requirements of 40° can easily be met. Furthermore, results suggest that multiple spacecraft can be
initially ‘stationed’ at intervals of 60° to allow for drift. These spacecraft do not need to be in co-planar
orbits, since the above sequential observations and station coverage must be met. More importantly, the
ground track control results of this analysis suggest that no additional propellant is reguired to maintain a
constellation separation if the coincident observations can be reduced to occurring at smaller time intervals.
In Figure 1, a mean anomaly separation angle is shown for spacecraft with the same B, but with different
ground track requirements of +/- 20 km and +/- 5 km. Figure 2 presents the separation angle for spacecraft
that have the same ground track requirements, but the B, of the formation flyer is 15% that of the reference
spacecraft (40 kg/m” vs 50 kg/m®).
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Mean Anomaly Control Results ’

The results of using the equations derived above for the sma targets are shown in Figure 3 and 4.
Figure 3 presents the required initial sma to drift a desired distance in a fixed time and the sma to drift a
fixed distance in a desired time. Two examples in the figure show the effects of changing the fixed
parameter. The results of this spreadsheet were numerically verified using the Frt’.;el"'lyerTM system and the
verified points are noted by the circles and squares. The initial reference sma was 7077 km, which
represents a typical mean element of the sma of ESSPO orbits.
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The mean anomaly control results of this analysis, while similar to the ground track results, suggest
that any given constellation separation magnitude can be controlled: The separations and time can also be
used as an input into the ground track control to minimize the separation drift distances and thereby increase
the number of sequential instrument observations. ' The results suggest that ESSPO type separation angle
requirements of 40° can easily be met. Furthermore, results suggest that multiple spacecraft can be initially
‘stationed’ at smaller separation angles. As with the ground track results, these spacecraft do not need to
be in co-planar orbits, since the above sequential observations and station coverage must be met.
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Analytical Drift Equations

Figure 4 presents a general analytical method to compute the initial radial separation for maintaining a
constellations given a desire to control the along track separation. The equations for this plot are analytical
and only a meant to given a representative case. The point is that a controlled drift in the along track
direction, both away from and back toward a reference spacecraft cannot be achieved by using the generic
drift equations previously described. The radial separation required for a controlled drift is an order of
magnitude smaller than that for general drift over a given time period. Since the orbit decay is inversely
proportional to the ballistic coefficient, the chase spacecraft will decay at an average decay rate similar to
that of the reference and is given by,

f, =#,-(Bc,[Bc,)
and the differential orbital decay rate will be

AF =7 -7,
the initial radial separation can then be given by

Ar =05-Ar-t

The maximum downrange drift rate can then be given by substitution into the differential angular rates
D, =15-Ju/r’ -AF

and the maximum drift is then

D =D, 051

The equations are presented here as a general guideline and do not hold up under a high fidelity modeling
which includes higher order Geopotential terms and differential orbital perturbations due to large angular
separations. Figure 4 presents the drift and initial radial separation only for the decay rates used in the
constellation analysis and need to be modified for each individual case. g
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MECHANICS AND DEFINITIONS OF FORMATION FLYING

In order to meet the coincident observation requirement without a large variation in the anomaly as
previously presented, a formation strategy must be developed and followed. Assuming that the fields of
view of the instruments are circular (on the order of one kilometer in diameter) and nadir pointed, a control
box can be determined to ensure that the FOVs will overlap to a given percentage’. It is assumed here that
this control box is 50 kilometers in the along track direction, given the assumption that the ground error is
equal to the along-track error for a sma of 7077 km. Therefore, to meet this two kilometer requirement, an
initial altitude displacement for the formation flying spacecraft with respect to the reference is required to
affect the formation flying theory.

Formation flying involves position maintenance of multiple spacecraft relative to measured
separation errors. It involves the use of an active control scheme to maintain the relative positions of the
spacecraft. Optimally, this process will be performed autonomously onboard the spacecraft and is called
* Enhanced Formation Flying, such as that which will be implemented by GSFC for the New Millennium EO-
1 mission. A complete description of the fundamental of formation flying was previously published”!!. An
example of the orbit dynamics of formation flying is shown in Figure 5.
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FIGURE 5. Formation Flying Example

Formation flying techniques can be used to meet a variety of mission separation requirements.
When the mission requirements call for a tightly controlled separation (kilometer range), whether the
overall separation is small or large, frequent control becomes necessary. Formations of spacecraft are
identified using tight or loose control methods. While some separations may seem exceedingly large, they
are determined by the science requirement to view coincident sites or 2 communication requirement of a
ground station to view only one spacecraft at a time. For large separations, one must consider the rotation of
the Earth if the formation is used to meet concurrent or sequential imaging of the same locations on the
ground. Therefore, relative crosstrack separations are used to follow the reference ground track for any
temporal requirement. A patent rights application was submitted to the GSFC patent counsel by two of the
authors for the application of Autonomous Closed Loop 3-Axis Navigation Control Of Spacecraft.’?

Formation Flying and Targeting Algorithm Description

The algorithm enables the spacecraft to execute complex 3-axis orbital maneuvers autonomously.
Figure 6 illustrates the basic sets of information required for formation targeting as it is incorporated into
AutoCon™. The algorithm is suited for multiple burn scenarios but is explained here in a two-burn
approach for clarity. The simplest formation flying problem involves two spacecraft orbiting the Earth. One
spacecraft, referred to as the control spacecraft, orbits without performing any formation flying maneuvers.
The second spacecraft is the chase spacecraft. It monitors the control spacecraft, and performs maneuvers
to maintain the desired formation phasing. The goal of the formation flying algorithm is to perform

v
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maneuvers to move the chase spacecraft along a specified trajectory, called the transfer orbit, from its initial
state 8¢ = (rp, v0) at a given time t( to a target state S¢ = (x, v¢) at a later time t;.

* Determine(r,,v,} att, (where you are at timet,).

o Determine(R.,V,) att, (where you want to be at
timet,).

* Project (R,,V,) through -At to determine (f,V.)
(where you should be at timety).

* Compute(dr,,0V,) (difference between where you
are and where you want be afte).

1!V1

FIGURE 6. Formation Orbital Parameters

This goal is accomplished by finding the state the spacecraft would have at the current time in
order to achieve the target state at the target epoch without maneuvering. This new state is called the
desired state Sq = (rg, v{); it is the target state propagated backwards in time from the target epoch to the -

epoch of the initial state. The difference between the initial state and the desired state is:

os=(50)=(sa %)
- |1 év Vo~— Vg

Then, following the derivation of the state transition matrix given in Battin °, the relevant state
transition matrix submatrices are:

R (1) = I—'j—‘(l— Floe - ra W3- (v, - vd)rflr—ﬁ—[v,vz}r cli]

R(1,) = ‘—Z—'Kv, vaXve-va) I l:_3|ﬂ"l(1' Flaf+cvel I FII]

The expressions for F, G, and C are derived from the universal variable. From these submatrices,
the C* matrix is computed as follows: d

R (t0)=-R7(1,)
Vi) =R (1)
C )=V ()R )]

The expression for the impulsive maneuver follows immediately:
Av =C’(t,)8r - 8v

Keplerian and Non-Keplerian Transfer Orbits

The transfer trajectory for constellations and formations does not need to be of a Hohmann type.
Having established both actual and desired states of a spacecraft’s location using any navigation filter, all
that is needed is a means of autonomously zeroing the difference between the two states. Given two
Keplerian trajectories and a chronologically defined maneuver window, a reference non-Keplerian
trajectory may be determined which will smoothly transport the spacecraft from its position on the first
Keplerian path at the beginning of the maneuver window to a desired position on thé second Keplerian path
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at the conclusion of the maneuver window. Control points on the reference trajectory in Figure 7 are
calculated at regular time intervals consistent with the ability of the spacecraft to receive and process
position data, fire its thrusters, and account for the effects of each firing. At each step in the process, the
next control point on the reference path is examined and back-computed along a Keplerian path to
determine small differences between spacecraft position and velocity on the reference path and determine
which Keplerian path would intersect the reference path at the next control point. These differences are
then fed into a system of linearized state transition matrices to determine the incremental AV required to get
the spacecraft to the next control position on the reference trajectory. At the conclusion of the maneuver
window, a final burn is required to match the velocity required to maintain the new Keplerian trajectory.
One can use single or multiple maneuvers to achieve the target condition ‘

Keplerian State K{y) &‘(,m ,(O’r Final Keplerian State Is(ll

dv(t)
Keplerian State Kft—- 7'y

Initial Keplerian State #j(t i
> Atie

Yntua LA W trinal
Nimiow —

FIGURE 7. Non-Keplerian Reference Trajectory During Maneuver

Algorithm Targets

For the formation, the orbit target is described as a location relative to the reference so that the
drifting due to ballistic coefficient difference can be utilized. For example, the EO-1 relative position has a
three dimensional target that is 450 km behind the reference spacecraft in the along-track direction, a sub-
kilometer altitude above the reference, and also a cross track differential to account for the rotation of the
Earth to meet the observation requirements. This target can easily be misinterpreted as a simple rotation in
true anomaly and altitude for the along-track direction and altitude and a node displacement for the cross
track requirement. If a true anomaly is used to compute the along-track difference, a completely different
orbit will be designed as the change on keplerian elements doesn’t take into consideration the true orbit with
the perturbations included. It can be shown that propagating an orbital element set with a delta true
anomaly either before or after the change in altitude will not give the desired results. Therefore, if one
wants the orbit or the formation flying spacecraft to “fly’ a predetermined trajectory, the following method
can be used. This method will account for the cross track component as well.

Initially use the reference orbit cartesian state
Offset the altitude of the formation flyer by the desired amount

e Propagate (numerical methods suggested) the initial state backward/forward by the required
time delta, e.g. plus or minus one minute.

e Change the Epoch of the final propagated state of the formation flyer to the original time to
effect a change in the cross track to meet coincident observations

e Change the coordinaté system into ECI from ECEF

Formation Flying Results
The following results are taken directly from the AutoCon™ ground system which utilizes the

GSFC algorithm. The results are divided into two formation flying scenarios of two spacecraft which
maintain either a close or a dynamic formation.” The initial conditions were derived from the orbit elements
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for the Landsat-7 mission which has a sun-synchronous orbit with a descending node MLT of 10:00 a.m.
and a ground track repeat of 233 orbits in 16 days. The results show formation flying evolution and the
effect on the mission groundtrack requirements. Evolution Figures are presented in a control spacecraft
rotating coordinate system with the radial direction being the difference in radius magnitude and the
alongtrack direction being the arc between the position vectors.

Close Formations

The first two figures present the maintenance of a formation that has a 10 meters radial separation
only. Figure 8 presents the formation evolution in radial and separation distances for a period of 90 days. -
To re-initialize this orbit, two maneuvers are used in a Hohmann-like transfer. The first DV to re-establish
the 10 m radial position separation by using the algorithm targeting method with a %2 orbit period and the
second DV by using the same method with a .01 orbit period to adjust the velocity components. Figure 9
presents the ground track of these orbits. The initial orbital condition placed the ground track at the “0”

. error location for convenience.
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Figures 10 and 11 present results of starting with an initial along track separation of 0 m and an
initial radial separation of 20 m and then targeting to a 10 m radial and 0 along track separation whenever
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either spacecraft performs a maneuver. Therefore, the first maneuver of the formation flyer is to adjust to
both the groundtrack of the control spacecraft after its maneuver and to re-establish the initial formation
parameters. Figure 10 presents the results when ground track maneuvers have occurred for the control
spacecraft. As seen in Figure 11, a ground track maneuver takes place slightly before the time when the
along track separation is near zero. The smaller parabola represent the maintenance of the formation to the
10 m radial separation. The formation evolution in radial and separation distances is presented for a period
of 90 days.

Dynamic Formations

The next simulation consists of maintaining a dynamic formation where the formation flying
spacecraft was in a different orbit plane with an along track separation on the order of 450 km. To simulate
this, the initial state of the control spacecraft was propagated backward for 1 minute ( 450 km at 7.5 km/s)
and to maintain the ground track requirement the right ascension of ascending node was adjusted to account

_ for a one minute Earth rotation. Figures 12 and 13 present the formation evolution in the radial versus
along track and cross track versus along track separation for several days. The effect of the perturbations
on the orbit elements has an immediate effect in the osculating orbital elements. This results in a very large
radial separation approaching +/- lkm. A cross track of +/- 3 Okm was anticipated since that is the effect of
the node difference. As the formation evolved, a maneuver was required to re-established the formation at
the initial separation of 0 m alongtrack and 30 km cross track at a radial separation of 10 m. Figure 12
presents the trajectory of the formation flyer. The figure shows the radial separation change from
approximately 500 m to +10 m and an along track separation from 450 km to O km. After this state was
targeted, a maneuver was performed to maintain a formation similar to the close formation. Figure 13
presents formation evolution after the maneuver.-
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EFF TECHNOLOGY DESCRIPTION

The control of the constellations and formations mentioned above use an algorithm that is part of a
new technology called AutoCon™, which features flight software that is capable of autonomously planning,
executing, and calibrating routine spacecraft orbital maneuvers'®'*, The autonomous EO-1 formation flying
control software AutoCon™ builds on this existing capability for the maneuver planning, calibration, and
evaluation tasks. A fuzzy control engine is ideal for this application because it can easily handle conflicting

constraints between spacecraft subsystems.

The AutoCon™ flight control system will need data from additional sensors and spacecraft
subsystems such as propulsion, groundtrack, navigation, and attitude data. It will then be possible to
autonomously generate, analyze, and execute the maneuvers required to initialize and maintain the
formation between Landsat-7 and EQ-1. Figure 14 shows a functional diagram of the AutoCon™ system.
Because these calculations and decisions are performed onboard the spacecraft, the lengthy period of
ground-based planning currently required prior to maneuver execution will be eliminated. The system is
general and modular so that it can be easily extended to future missions. Furthermore, the AutoCon™ flight
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control system is designed to be compatible with various onboard navigation systems (i.e. GPS, or an
uploaded ground-based ephemeris). This formation flying technology will demonstrate the capability of
EO-1 to fly over the same groundtrack as Landsat-7 within +/-3 kilometers at the equator while
autonomously maintaining the formation for extended periods to enable paired scene comparisons between
the two satellites. 0 |

Autonomous Control Architecture Design

The Enhanced Formation Flying (EFF) system for the EO-1 application is designed by GSFC,
Al Solutions, Inc., and the Hammers Company, who has responsibility for the EO-1 attitude control
system (ACS). The flight software, AutoCon-Flight ™ will serve as the overall architecture and execute
the Goddard developed control algorithm for maneuver decision, design, and execution. This control
algorithm will provide a delta-velocity magnitude, burn epoch, and duration to the ACS for execution.
Maneuver implementation is the responsibility of the ACS. Maneuver calibration will be performed
. autonomously within AutoCon™. Integration testing and system verification will be performed with the
ACS flight software prior to the mission to demonstrate technology readiness. Ground simulation
equipment will be used for system integration, testing, and performance evaluation. Verification of the
flight system performance during the operational phase will be conducted according to a validation plan.
This validation will occur in several incremental steps starting with ground verification of the maneuver
parameters that have been computed onboard, and will culminate with full onboard autonomous
maneuver prediction, planning, and closed-loop onboard maneuver execution. A subsystem interface is
shown in Figure 15.

*LS7 ephemeria info
»18.7 muacuver info

EFF Subsystem Interfaces

 AutoCon

‘Relatios Nax Alg
*Teackiag BO1 relativa o
EOS-AM{ mdLST

Figure 14 - AutoCon Functional Diagram A Figdre 15 « AutoCon Sub-System Diagram

CONCLUSIONS

In considering the use of constellations to meet scientific objectives, one must take into account the
physical limitations and restrictions imposed. Our results suggest that no additional propellant is required
to maintain a large constellation separation if the coincident observations can be reduced to occurring at
small time intervals when the orbit mechanics would naturally provide this event. The maintenance of a
constellation for constant coincident viewing can be quite complicated but is feasible if one manages and
plans for this endeavor. This planning should assess emerging technology and the system engineering
aspects of the spacecraft development. It should assess the spacecraft ballistic coefficient in particular as
well as the amount of fuel required. The amount of coincident observations that are required to meet
mission objectives versus the amount desired should be addressed. The formation can be established to
provide coincident observations on a timed schedule, but may miss targets of opportunity for calibration or
extra coverage.

This paper shows that the formation flying algorithm presented is a feasible technology that can be
used in a closed-loop design to meet science and mission requirements of Low Earth Orbiting missions in
the NMP and ESSPO. The algorithm is very robust in that it supports not only benign,ground track control,
but demanding 3-D control for inclination and non-Keplerian transfers. To best meet the NMP EO-1
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requirements, this innovative technology will be ﬂown onboard the spacecraft which launches in May 1999.
The algorithms are being integrated into AutoCon™ for both ground support validation and closed-loop
onboard autonomy. This system will be implemented as a close-loop flight code onboard the NMP Earth
Orbiter-1 (EO-1) spacecraft thereby yielding the name of Enhanced Formation Flying while an open-loop
system w111 be implemented on the ground for verification. The application of this algorithm and
AutoCon™ system to other NMP or ESSPO programs is unlimited and can be used to fully explore the
NASA mandate of faster, better, cheaper spacecraft.
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NANOSAT CONSTELLATION MISSION DESIGN
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ABSTRACT

The NanoSat constellation concept mission proposes simultaneous
operation of multiple swarms of as many as 22 identical 10 kg spacecraft
per swarm. The various orbits in a NanoSat swarm vary from 3x5 to
3x42 R, in geometry. In this report the unique flight dynamics issues of
this constellation satellite mission design are addressed. Studies include
orbit design, orbit determination, and error analysis. A preliminary survey
determined the orbital parameters that would yield a 100 minute shadow
condition maximum while providing adequate ground station access for
three ground stations.
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A MODERNIZED APPROACH TO MEET DIVERSIFIED EARTH
OBSERVING SYSTEM (EOS) AM-1 MISSION REQUIREMENTS

Lauri Kraft Newman
NASA GSFC, Code 572

Mark E. Hametz, Darrel J. Conway
Al Solutions, Inc.

From a flight dynamics perspective, the EOS AM-1 mission design and
maneuver operations present a number of interesting challenges. The mission
design itself is relatively complex for a low Earth mission, requiring a frozen,
Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to
design an orbit that meets these requirements, the recent focus on low-cost,
“lights out” operations has encouraged a shift to more automated ground
support. Flight dynamics activities previously performed in special facilities
created solely for that purpose and staffed by personnel with years of design
experience are now being shifted to the mission operations centers (MOCs)
staffed by flight operations team (FOT) operators. These operators’
responsibilities include flight dynamics as a small subset of their work; therefore,
FOT personnel often do not have the experience to make critical maneuver
design decisions. Thus, streamlining the analysis and planning work required for
such a complicated orbit design and preparing FOT personnel to take on the
routine operation of such a spacecraft both necessitated increasing the
automation level of the flight dynamics functionality.

The FreeFlyer™ software developed by Al Solutions provides a means to
achieve both of these goals. The graphic interface enables users to interactively
perform analyses that previously required many parametric studies and much
data reduction to achieve the same result. In addition, the fuzzy logic engine
enables the simultaneous evaluation of multiple conflicting constraints, removing
the analyst from the loop and allowing the FOT to perform more of the
operations without much background in orbit design.

Modernized techniques were implemented for EOS AM-1 flight dynamics
support in several areas, including launch window determination, orbit
maintenance maneuver control strategies, and maneuver design and calibration
automation. The benefits of implementing these techniques include increased
fuel available for on-orbit maneuvering, a simplified orbit maintenance process
to minimize science data downtime, and an automated routine maneuver
planning process. This paper provides an examination of the modernized
techniques implemented for EOS AM-1 to achieve these benefits.
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INTRODUCTION

The challenge in determining how best to support each mission is to not only look
to the past to learn from successes and failures of previous missions, but to also look to
the future to take advantage of new technologies. EOS AM-1 is no exception. In a
similar fashion to the Landsat mission series, EOS AM-1 will fly in a Sun-synchronous,
frozen orbit with a 16-day repeat cycle. This orbit necessitates frequent orbit
maintenance maneuvers over the life of the mission. Modernized techniques were
implemented for EOS AM-1 flight dynamics support in several areas, including launch
window determination, orbit maintenance maneuver control strategies, and maneuver
design and calibration automation. The benefits of implementing these techniques
include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance
process to minimize science data downtime, and an automated routine maneuver planning
process.

A cooperative effort with Lockheed Martin (the launch vehicle manufacturer) has
resulted in an optimal use of the launch vehicle’s capabilities that has enabled a greater
than instantaneous launch window and has minimized the amount of corrective
maneuvering required by the spacecraft. Once on orbit, analysis has shown that routine
stationkeeping maneuvers executed as single burn maneuvers do not compromise orbital
constraints. Additionally, in keeping with NASA'’s direction to reduce operations costs,
the maneuver design process has been automated through the use of FreeFlyer™. This
paper details these modernized approaches to meeting the AM-1 requirements described
above, including updated analysis methods, simplified maneuver alternatives, and
automated operations.

MISSION OVERVIEW

The Earth Observing System AM-1 (EOS AM-1) spacecraft is an Earth Systems
Science Program Office (ESSPO) initiative to explore global change and the Earth’s
environment. EOS AM-1 will be launched no earlier than October 6, 1998 aboard an
Atlas TIAS expendable launch vehicle (ELV) from the Western Range of Vandenberg Air
Force Base. After the ascent maneuvers are executed to place EOS AM-1 in its mission
orbit at 705 kmm mean equatorial altitude, the five science instruments aboard the
spacecraft will begin taking measurements of the Earth’s environment. These data will
later be correlated with data from related instruments on other spacecraft to provide
scientists with a more in-depth view of the phenomena under study.

The EOS AM-1 mission orbit is both frozen and Sun-synchronous with a 16-day
repeating ground track. The ground track must be maintained to 20 km of the World
Reference System (WRS). The frozen orbit condition must be maintained such that the
altitude over a given latitude is within +10/-5 km of the nominal value at all times. In
addition, the Mean Local Time (MLT) of descending node must remain between 10:15
am and 10:45 am throughout the duration of the mission to maintain constant lighting
over the Earth’s surface. Passive control of the 98.2 degree nominal Sun-synchronous
inclination prevents the need for out-of-plane maneuvers while maintaining the constant
lighting within these mission tolerances. The inclination will be biased above the
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nominal value to achieve a 10:15 MLT at beginning of life, and the inclination drift with
time will cause the MLT to vary slowly over the course of the mission towards 10:45 and
back to 10:15, requiring no maneuver to adjust the inclination actively. For more details
on this technique, see Ref. 1.

METHODOLOGY IMPROVEMENTS

In preparing to support the launch and operation of EOS AM-1, flight dynamics
analysts have incorporated several techniques into the mission plan that, while not new,
have not previously been used in an optimized manner. The first of these techniques is
the use of guided targeting to achieve optimal inclination targets determined on board
using a polynomial to widen the launch window. The second technique involves using
one burn instead of the traditional Hohmann transfer to accomplish the combined ground
track and frozen orbit maintenance. Performing one burn instead of two minimizes
instrument down times and periods of less-accurate data while simplifying operations.
The paragraphs below describe the benefits and concern associated with the use of these
techniques and provides analysis verifying the accuracy and reliability of these methods.

Launch Window Widening

To achieve a Sun-synchronous orbit, the spacecraft must be launched at the time
that the desired orbit plane passes through the launch site longitude. This time occurs
once per day in the appropriate (ascending or descending) direction. Ideally, this
constraint would imply an infinitely small launch window to accurately achieve the
desired MLT. The length of the window may be widened around the exact launch time
by making use of the permissible error range on the MLT requirement. However, this
error box is often better used to eliminate inclination maintenance maneuvers. The MLT
drift throughout the mission may be kept to within the MLT limits by choosing the
optimum inclination for a given MLT. This strategy eliminates the need for out-of-plane
inclination maintenance maneuvers. Figure 1 (Ref. 2) shows the effects on MLT drift of
the optimum inclination choices for EOS AM-1 for 10:20 am and 10:40 am beginning of
life MLTs. This maintenance method for Sun-synchronous orbits is described more fully
in Ref. 1. When these considerations are incorporated into the analysis, the desired
launch target still requires achieving the optimum combination of inclination and MLT.
Therefore, a virtually instantaneous launch window is once again required.

A second option is to make use of guided targeting when available from the ELV
for widening the launch window by altering the target orbit parameters during powered
flight. Guided targeting is a feature often used by a vehicle to-accommodate needs of
various payloads, such as azimuth targeting for deep space missions and minimum
parking orbit inclination targeting for geosynchronous spacecraft. The Atlas IIAS vehicle
that will be used to launch EOS AM-1 is capable of guided targeting implemented though
the use of a polynomial in the flight code. EOS AM-1 is taking advantage of this
capability to change the inclination and MLT targets depending on the actual minute
within the launch window that the ELV lifts off. Using this method, the EOS AM-1
window was widened from instantaneous to a 20 minute launch opportunity. Although
the EOS AM-1 MLT limits are between 10:15 and 10:45 am indicating that a 30 minute
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window would be possible, the launch vehicle is restricting its target orbits to those
between 10:20 am and 10:40 am MLT. This conservative approach will to prevent
exceeding the science requirements due to vehicle dispersions on the inclination, which
would cause a high MLT drift rate at beginning of life. This high drift rate may cause an
immediate violation of the MLT constraint.
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Figure 1: Optimum MLT and Inclination Targets for EOS AM-1

The Atlas flight code computes the inclination target in the following manner
(Ref. 3). After launch occurs, the actual liftoff time is used to calculate the desired
Greenwich Mean Time (GMT) of the descending node of the injection orbit from the
equation:

GMT,, = GMT,, + At +At, )

where: GMT.o is the GMT of liftoff in seconds.
At is the nominal time of launch vehicle flight from liftoff to
spacecraft separation (seconds)
At is the nominal time from spacecraft separation to the descending
node (seconds)

Because the exact actual powered flight times are not known before completion of
that flight segment, values must be used for At and At_that are determined pre-launch.
In addition, the flight code cannot accept multiple values for these variables based on
launch time, so the same constant values of At . and At2 must be hard coded for use at all
points in the launch window. Since the launch will most likely occur at the beginning of
the launch window, the 10:20 values for these times were computed based on simulated
powered flight trajectories by Lockheed Martin and set as constants in the flight code.
Then, the GMT,,, computed in (1) may be used to compute ML T, assuming a constant
value for the longitude of descending node (LDN):

GMTp, = {MLT_, - [LDN * (86400 sec/360 deg)] }mocuto 24 )
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where: LDN is the longitude of descending node (deg East). It is the angle
measured east of the Greenwich meridian to the descending node at
the time of the descending node crossing.

Finally, the target inclination may be computed from a polynomial of the form:
INCragg = Co + Ci(MLT,,) + Cy(MLT,,)* ®3)

where the MLT,, is measured in hours computed using (2), INCrarg is the target
inclination in degrees, and the coefficients are computed before launch by fitting a curve
to the optimal inclination and MLT targets for each minute of the launch window as
shown in Figure 2 (Ref. 2). For the data in Figure 2, Co = 80.987296, C; = 3.460392,
and C; = -0.172758. These values of inclination and MLT, computed during flight
augment the specified altitude target to fully determine the ELV target orbit.
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Figure 2: Optimum MLT targets for EOS AM-1 Injection

One issue raised about this technique is that when using a constant value for the

At’s and the LDN in the above equations, the error caused by using one value over the
whole launch window might outweigh the benefits of using the guided targeting. This
concern arose because the inclination targets varied only 0.05° over the 20 minute launch
window. It was eventually decided that holding the values constant did not cause a
problem based on the analysis described below. Note that although the ELV is only
contractually obligated to provide inclination accuracy within 0.1°, historical data has
shown that Atlas vehicles routinely achieve inclination targets to within hundredths of a
degree of the targeted value. Therefore, the targeted values are a reasonable goal for the
mission. The closer the vehicle can place the spacecraft to its targeted inclination, the
less fuel the spacecraft will have to spend on operationally complex out-of-plane
inclination maneuvers to return to the optimum initial state.

Lockheed Martin supplied optimized trajectory runs for 10:20, 10:30, and 10:40
optimum MLT, and inclination targets. Flight Dynamics used these data and held the
LDN and At’s from the 10:20 nominal trajectory constant over the whole launch window
to compute the inclination target, as will be done in the flight code. The target
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inclination was then computed using equations (1) - (3) for each minute of the window.
Values for the beginning, middle, and end of the launch window are shown in Table 1.

Table 1
INCLINATION TARGETS USING BEGINNING OF WINDOW LAUNCH
CONSTANTS
MLT GMTw Ay Aty GMTpn LDN LMST INC
Targeted (hours) Target

10:20 67065.8 820.3867 126.6371 68012.82 231.5716 10.33333384 98.29827
10:30  67665.8 820.3867 126.6371 68612.82 231.5716 10.50000051 98.27531
10:40 68265.8 820.3867 126.6371 69212.82 231.5716 10.66666717 98.24275

The worst case encountered in this analysis is a launch at the end of the window
while achieving the 36 LDN dispersions on the target state. If the 98.24275° target 10:40
state above is compared with the optimum inclination of 98.2413°, the difference is
-0.001446309° in inclination, well within the inclination dispersion allowance of 0.1°. If
non-constant values of LDN and At had been used, the 10:40 target would be computed
using the optimal 10:40 LDN and At’s, yielding 98.24115°, a difference of 0.00015° from
the target computed using 10:20 constants.

The worst-case LDN dispersions computed by Lockheed Martin are +/-0.060525°
for a 10:30 am target orbit. Applying these dispersions to the 10:20 data above
(assuming similar dispersions regardless of when in the launch window liftoff occurs),
the targets may be recomputed using the maximum (LDN,,+0.060525°) and minimum
(LDN,,,-0.060525°) LDNs. Results indicate that the maximum LDN dispersion case
causes the 10:40 target to exceed the MLT box by 10.66792605-10.66666666 =
0.00125939 min, well within the 0.5 min allowable dispersion. For the minimum LDN
dispersion case, the 10:20 target exceeds the MLT box by 10.33333333-10.32652272 =
0.00681061 min, also well within the 0.5 min allowable dispersion.

These analyses show that guided targeting as is used for the EOS AM-1 launch is
a technique that works well for Sun-synchronous orbits. Thus a technique that is applied
regularly to deep space and geosynchronous orbits has been shown to produce significant
improvements in the low-Earth regime.

Frozen Orbit Control

Having thus improved the launch and ascent process, the maintenance of the
mission orbit was also examined for possible improvements. In addition to maintaining
the ground track control grid, the science instruments on EOS AM-1 dictate that only
small altitude changes can occur over any given latitude. Consequently, a frozen orbit is
implemented to constrain the mean argument of perigee near 90 degrees. Freezing the
orbit requires a mean eccentricity of 0.00116 for the mission altitude and inclination. If
no ground track control maneuvers were required, some infrequent frozen orbit
maintenance maneuvers would be required over the life of the mission to reshape the
orbit. However, since the mission requires frequent altitude maneuvers, these maneuvers
can be used to simultaneously restore the frozen orbit while performing ground track
control. The key to utilizing the altitude maneuvers to simultaneously meet the frozen
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orbit constraints is to perform the burns at a location in the orbit that will restore the orbit
shape rather than degrade it. The location of the single burn within the orbit should be
chosen to place the post-maneuver mean eccentricity and argument of perigee as close as
possible to nominal values (0.00116 and 90 degrees, respectively). The maneuvers are
placed alternately in the two locations, separated by about 180° anomaly, that the
Hohmann transfer maneuvers would normally be placed to restore the frozen orbit.

Because it is desirable for operational reasons (less downtime for instruments,
less data interruption, less maneuver planning) to perform the least number of maneuvers
possible and still maintain the orbit within the science requirements, the technique of
using only one maneuver instead of the traditional Hohmann transfer pair to maintain the
AM-1 ground track was designed into the AM-1 support. A single maneuver has the
same total AV as the pair and is placed appropriately to maintain the frozen orbit
condition. This technique was used with success to maintain the semi-frozen orbit of
Landsat-5. AM-1 has a more stringent requirement to maintain its frozen altitude to
within +10/-5 kim mean altitude and +20° mean argument of perigee. Therefore, analysis
was required to investigate the effects of the location of single ground track correction
maneuvers within the orbit on the frozen orbit condition.

An algorithm was developed for the Flight Dynamics Analysis Branch that
determines the best location to perform a single burn to drive the orbit back to the
optimal frozen conditions. This algorithm was easily integrated into AI Solutions’
object-oriented FreeFlyer™ product and is used as part of the automated ground track
maintenance maneuver planning process. The algorithm (Ref. 5) requires as input the
initial mean semi-major axis, argument of perigee, and eccentricity, as well as the values
of the AV and burn duration required for the ground track maintenance maneuver that
will be accomplished in combination with the frozen orbit maintenance. First, the
average orbit velocity is computed from the mean semi-major axis (a) as:

V., =1000,/ F2 g @
a

Dividing the total desired AV for the ground track maneuver by the burn duration
yields a AV per second, dv. Then the standard variations of Keplerian elements under
this AV are given by:

_ 28v(e +cos MA)
B 1%

avg

Ae (5)

_ 26vsin MA
T eV

avg

Aw ©®

Applying these equations iteratively over the duration of the maneuver allows the
initial Keplerian elements to be coarsely propagated. After each iteration, the mean
anomaly (MA) is calculated using:
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a

The initial MA may then be varied parametrically to determine the value that best
achieves the desired frozen orbit conditions. Figure 3 shows a scan over one orbit at 2°
mean anomaly increments. The AV is applied at each step and the post-burn eccentricity
and argument of perigee computed. The area highlighted by the circle in Figure 3 shows
where the set of post-burn solution points most closely intersects the target point of
0.00116 and 90°. This intersection point corresponds to a mean anomaly of 49°, where
the computed values are 90.22° and 0.0011689, respectively. The point of 0° MA and the
direction of increasing MA are both indicated in the figure.

Scan of Burn Location to Restore Frozen Conditions
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Figure 3: Optimum Mean Anomaly to Achieve EOS AM-1 Frozen Orbit

The frozen orbit evolution for an 18-month span with maneuvers determined
using this algorithm is shown in Figure 4. The figure indicates that performing the single
maneuver ground track corrections at the optimum frozen orbit restoration location
achieved the maintenance of the mean argument of perigee to within the $20° allowed by
the mission requirement. The straight line portions of the plot indicate places at which
the maneuvers were performed.

The radial position constraint of +10/-5 km in mean altitude is then met by
default, since the argument of perigee requirement is the more stringent of the two as
described in Reference 4. This result may be easily seen when examining Figures 5 and
6 from Reference 4, which show the frozen orbit evolution for eccentricities that are
increments of 0.002 higher (Figure 5) and lower (Figure 6) than the nominal 0.00116
value. The center ellipse in each figure is the nominal eccentricity, and ellipses moving
out from the center are incrementally higher or lower, respectively. Based on both
figures, the eccentricity must not deviate more than +0.004 from the nominal value. For
an argument of perigee deviation of +20°, keeping the eccentricity deviation within these
bounds requires constraining the altitude to within approximately +3.7 km/-2.3 km of the
705 km mean nominal, as shown in Figure 7 (Ref. 4). Since these altitude restrictions are
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tighter than the required +10/-5 km limits, maintaining the argument of perigee will
ensure that the radial position requirement is not violated.
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Figure 7: EOS AM-1 Altitude Variation vs. Eccentricity

ADVANCEMENTS IN OPERATIONS TECHNIQUES

Flying a spacecraft with multiple orbital and operational constraints such as EOS
AM-1 traditionally requires experienced personnel to design, plan, and execute maneuver
control strategies. Current directions in NASA are driving towards more streamlined,
“lights-out” environments in which spacecraft operators are only present during the day
shift. This change of approach forces operators to perform a variety of functions more
efficiently. The FreeFlyer™ mission design and operations software, a commercial off-
the-shelf (COTS) product developed by AI Solutions, Inc. under contract to NASA
GSFC, provides the analyst with all the functionality required to design and test various
control strategies. More importantly, this same strategy is then easily automated in the
operations environment.

There are two factors that must be addressed in the mission design process. The
first is examining the orbit mechanics to determine the best way to achieve and maintain
an orbit that will meet the science requirements. The second, equally important factor is
to address the real-world operational issues that must be included in any maneuver plan.
For example, the basic physics behind the ground track control problem is to adjust the
orbit period using altitude control. The operational constraints can include ground
station viewing requirements and lighting constraints. FreeFlyer™ is designed to
include both types of considerations in the design process.

The Physics - Ground Track Control

As described earlier, the ground track pattern for EOS AM-1 must remain within
420 km of the WRS grid. In order to use the full 20 km ground track control box, the
orbit must be raised above the nominal altitude, causing the period to be greater than that
of the nominal altitude. In that case, the spacecraft takes longer than nominal to reach the
descending node, the Earth turns farther under the orbit plane, and the ground track drifts
westward. When the nominal altitude is reached, there is no drift. As the period of the
orbit continues to decrease, the spacecraft to reaches the descending node earlier each
orbit and the ground track error drifts eastward. The drift continues eastward to the edge
of the control box. Consequently, periodic altitude raising maneuvers are required prior
to reaching the eastern boundary to reset the ground track to the eastern edge of the box.
After the maneuver, drag will again act on the orbit and will slow the westward drift rate
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until it begins to drift eastward again. This repeated process of the ground track control
problem appears as a scalloped-shaped plot as shown in Figure 8, where maneuvers are
executed at the peaks and nominal altitude is reached in the troughs.
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Figure 8: EOS AM-1 Ground Track Control for 20 km Error Box

Since the ground track drift is due. largely to atmospheric drag effects and since
the EOS AM-1 mission will span periods of both low and high solar flux, the frequency
of the maneuvers will vary greatly over the mission lifetime. Also, the magnitude of the
maneuvers can vary by factors of up to four between the solar maximum and the solar
minimum. This variability has been handled historically by sizing the ground track
maneuvers by hand to see what size burn will turn the drift westward while not
overshooting the westward boundary. Stated differently, the analyst would test burn
sizes until the turnaround point was at an acceptable limit near the western edge. This
requires analyst knowledge of acceptable limits, drift rates, and flux predictions.

In FreeFlyer™, this process has been automated by numerically implementing
the same strategy. The burn size is determined using an internal targeting algorithm
based on a differential corrector incorporated into FreeFlyer™. Each iteration is
evaluated by checking the longitude error at the turnaround point. This point is
numerically defined as the location where the derivative equals zero. Since the longitude
error data points contain small oscillations as shown in Figure 5, a running average of the
data is first computed to smooth the curve so that a derivative may be calculated
accurately.

Figure 9 shows the results of a maneuver targeted with the method described
above. In this figure, an initial guess is tested in the curve labeled (1), a perturbation is
applied along (2), and then the first iteration (3) is computed, tested, and accepted. This
strategy minimizes the analysts’ time pre-launch and allows the FOT to perform
functions operationally without prior understanding of the problem.
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Figure 9: Ground Track Maneuver Targeting

In addition to designing and maintaining the orbit to meet science requirements,
the operations environment places restrictions on the orbit design as well. These
restrictions are often arbitrary and not related to the mechanics of the design itself.

FreeFlyer™ is designed to automate operations by addressing both the physics
and these operational requirements. The control language in the program allows the user
to require any number of conditions to be met before performing an action. Therefore the
user can state that if the need for a maneuver is detected and the spacecraft is in view of a
ground station and the spacecraft is not in shadow, then the software should plan and
execute the required maneuver.

However, since a maneuver plan will not always be comprised of true/false
conditions, FreeFlyer™ contains a fuzzy logic engine to resolve conflicting constraints
or to allow constraint weighting. For example, if a soft boundary is reached, there may
be time to wait for an ideal maneuver location. However, if the hard boundary is reached
an immediate burn may be required. Some examples of these principles as they are being
used for the EOS AM-1 mission are described in the remainder of this section.

Operational Considerations — Calculable Parameters

A key component to automated maneuver planning is to include operational
considerations, such as lighting conditions or maximum thruster on-times. While some
constraints are either true or false, others may be approximate constraints. FreeFlyer™
provides a mechanism that allows mission constraints to be defined and evaluated in
terms of approximations. For instance, a basic maneuver to raise perigee would not
necessarily need to occur exactly at apogee, but rather near apogee to allow other
constraints (such as acquiring a ground station) to be satisfied.

FreeFlyer™ contains a mechanism that allows combinations of constraints to be

evaluated simultaneously and resolved into acceptable actions, even when these
constraints appear to conflict. This mechanism is fuzzy logic. Fuzzy logic has been used
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for control systems in cameras, subways, and automobiles to resolve conflicting control
goals. FreeFlyer™ takes this technique and applies it in the orbit control regime.

Perhaps the least glamorous and yet most valuable example of an operational
constraint utilizing fuzzy logic is time. With the staffing of the prime operations support
shift during normal business hours, the scheduling of maneuver times is a key component
of the EOS AM-1 control strategy. For AM-1 the FOT desired to restrict the maneuvers
to occur mid-week during the late afternoon, allowing sufficient time to plan and execute
the burn in a single shift. In FreeFlyer™, the day of the week and time of the day for
maneuvers can be added easily into the control logic of the maneuver plan.
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Figure 10: Fuzzy Set Utility in FreeFlyer

A fuzzy set representing the time of day is shown in Figure 10. The set is defined
over a domain ranging from 13 to 17, representing the Greenwich Mean Time (GMT) of
a day measured in hours. This domain was chosen to correspond to midday local
time/EST. The shape of the set is used to weight the importance of the maneuver time in
the control logic. Higher values (i.e. higher “degrees of membership” in the fuzzy logic
sense) represent more acceptable solutions. This fuzzy set can then be used in
FreeFlyer™ as a component of the decision algorithm configured by the user. More
specifically, the user controls the maneuver plan using the following syntax:

If (AM1.LongitudeError > 18 and '~ AM1.TimeOfDay is
atPrimesShift) then Maneuver EQSAM1

This command line (taken literally from a FreeFlyer™ control script, with slight
modification for clarity) evaluates the error in the EOS AM-1 ground track and the time
of day at the operations center for a modeled spacecraft epoch, and plans a maneuver if
the error in the ground track is approaching the control boundary at a time of day that is
acceptable for maneuver execution.

Operational Considerations — Non-Calculable Parameters
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The time of day, shadow conditions, or ground station coverage are events that
can be readily computed in FreeFlyer™. EOS AM-1 also requires the interpretation of
man-made constraints. The requirement on the ground track control maneuvers is that
EOS AM-1 must be in view of one of the TDRS satellites. For long-range planning, the
location of the maneuver is tested to determine if the spacecraft is outside the TDRS zone
of exclusion. For final maneuver plans, however, this is not sufficient.

A contact schedule for EOS AM-1 is delivered electronically on a weekly basis.
This schedule contains the allotted contact opportunities with the TDRS system, a subset
of the geometrically possible contacts computed in FreeFlyer™ . The contacts are
approximately 10-minutes in duration and occur approximately twice per orbit. To
ensure that the maneuver is planned within these scheduled passes, an ASCII file
containing the weekly schedule is read by FreeFlyer™, and is converted to fuzzy sets
based on the spacecraft epoch. These fuzzy sets are then incorporated into the control
script in a manner similar to that discussed above for the time of day constraint. The new
control logic takes the form (Ref. 6):

Load InTDRSContact from TDRS_Schedule using AM1.Epoch;
If (AMl.LongitudeError > 15 and AMl1.Epoch is atPrimeShift
and AM1.Epoch is InTDRSContact) then Maneuver EOSAM1

The analyst literally sets the control logic using this kind of near-patural language
technique. The shapes of the fuzzy sets can easily be modified using extensions to the
control language.

The flexibility provided by FreeFlyer™ for orbit control makes it an extremely
powerful tool for mission analysis, planning and operations. The tool addresses needs in
the user community that have been identified for a number of years, and moves the
satellite control regime much closer to autonomous operations.

CONCLUSION

EOS AM-1 has been able to realize cost savings in several areas. First, the expert
flight dynamics personnel will only be required to support the mission post-launch in a
consultation standing. FOT personnel will be able to include the routine flight dynamics
activities into their daily schedule with a minimum of impact due to the high level of
automation. Maneuvers will be restricted to the nominal work hours of the prime shift.
In addition, time spent by the flight dynamics experts in planning special maneuvers, like
the ascent sequence, has been drastically reduced by eliminating the need for running
multiple pieces of software in parametric runs.
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ABSTRACT

The SAC-A is a Low Cost — Short Schedule — Small Bus dedicated to test equipment and new technologies
which may be used in operational or scientific missions with more immunity to failures. This satellite is
planned to be launched in July, 1998 as part of the STS 88 mission.

The opportunity to fly in a low orbit for a reasonable period of time (at least 1 year), allows the
characterization of the behavior of this new instrumentation in real world applications and also to compute
performance.

The 68 kg satellite will have an almost octagonal configuration to be fitted within the Hitchhiker Motorized
Door Canister with Hitchhiker Ejection System (HES) envelope. This volume is approximately a cylinder
of 19 inches diameter by 20.5 inches maximum height.

The orbit will be circular @ 200 nm altitude with an inclination of 51.6 deg, the expected lifetime is about
one year.

The experiments on board are:

Differential Global Positioning System Receiver (DGPS)
CCD Camera

Tri Axial Magnetometer (TAM)

Argentinian Si Cells

UHF Receiver/VHF Transmitter.

From the mission design point of view, the on board power consurnption plays a central role for the attitude
strategy design: to supply the essential loads at least three solar arrays should be pointed most of the time to
the sun. In addition, the DGPS receiver and the CCD camera should be pointed to the zenith-nadir
direction. The other experiments do not impose any attitude constraints on the mission.

To fulfill all of the requirements several control modes are implemented. The paper explains in details the
strategy adopted.

The sensors to accomplish the mission are:
Six coarse sun sensors. Six Argentinian Cells, placed on the satellite to cover the total sphere, although
the configuration has some blind holes behind the solar panels.

Tri-axial magnetometer. It is the same fluxgate magnetometer used for the experiment, but the readings
are taken only with 10 bits.

The actuators are:
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Momentum Wheel. An in house made momentum wheel, located along the direction perpendicular to the
sun line.

Magnetic Torque Coils. Three circular air core coils, one on each axis.
There are four identified operational modes along the lifetime of the satellite, listed below.

Sun Pointing Mode. The solar arrays are placed toward the sun to maximize the power generation. In this
mode the whale tracker and the Argentinian Si Cells are tested. During eclipse, the sun signal is not
available and the ACS enters in to eclipse submode.

Picture Mode. This mode allows to place the momentum bias normal to the nadir and sun vector to take
Earth pictures, after a rotation around the wheel axis. The CCD camera is tested with this mode.

DGPS Control Mode. This mode allows to rotate the body Y axis around the sun line in order to point the
antenna’s boresight vector as close as possible to the zenith axis, required by the DGPS receiver to lock on
the DGPS satellites. The DGPS and the triaxial magnetometer (because a very precise time and orbital
position is needed to correlate the Earth magnetic field) are tested during this mode.

Spinning Mode. The satellite is spun along the momentum bias to check the DGPS performance in
spinning satellites. ‘

The Safe Hold Mode (with momentum wheel ON) is in effect the Sun Pointing Mode (from the power
consumption and thermal equilibrium point of view). In case of momentum wheel failure, the satellite will
enter in a “safe” spin mode along the sun line to preserve the necessary power generation.

The on board software has the capability to compute ephemeris, the magnetic field and sun vectors in
inertial frame using theoretical models, attitude determination in real time and also detects failures which
change the mode to Safe Hold. The software design is flexible enough to allow changes or patches on
variables and modify areas of memory.

The proposed configuration is better than other possibilities considered in terms of safety and stability,

because the precession of the momentum bias for Earth observation or to take pictures or to acquire the
DGPS satellite is around the sun.
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NEW METHODS IN ON-BOARD ATTITUDE CONTROL
Karlheinz Spindlert

In this paper we will derive control laws to perform attitude
maneuvers which automatically avoid the pointing of a speci-
fied spacecraft axis into forbidden directions. These laws will
be found by a control-theoretical approach using methods from
differential geometry.

We will start by deriving a particularly simple control law ma-
neuvering a spacecraft from rest to rest between prescribed
attitudes in the absence of pointing constraints. Subsequently,
we will show how maneuvers of this type can be concatenated
in such a way that prescribed forbidden directions are guaran-
teed to be avoided. The control law obtained in this way does
not take recourse to numerical methods and hence can be easily
implemented in an on-board attitude control system, possibly
for performing maneuvers in an emergency mode. Finally, we
will propose an iterative scheme to optimize the solution.

INTRODUCTION

The attitude or orientation of a spacecraft (modelled as a rigid body) is the
matrix g € SO(3) whose rows are the directions of the body’s principal axes with
respect to some reference coordinate system. Let us denote by I, I3, I3 the mo-
ments of inertia, by w;,ws,ws the angular velocities and by T,T%,Ts the exerted
torques about the principal axes. Then the attitude kinematics of the spacecraft
are described by the equation

9(t) = (w1(2)Eyr + wa(t)E2 +ws(t)Es) g(2) (1)
where
0 0 0 0 0 -1 01 0
E,=1{0 0 1}, E,=1j0 O 0], E3z=]|-1 0 0 (2)
0 -1 0 1 0 0 0 0 O

t Fachhochschule Wiesbaden, Fachbereich Mathematik, Naturwissenschaften, Datenver-
arbeitung und Umwelttechnik, Kurt-Schumacher-Ring 18, D - 65197 Wiesbaden, Germany.
Phone: (49) 611-9495-377. FAX: (49) 611-9495-382. Electronic mail: spindler@r5.mnd.fh-
wiesbaden.de.
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whereas the dynamics are governed by Euler’s equations

Lo(t) = (I2 — B)ws(t)wa(t) + Ta(2),
Lwa(t) = (Is — h)ws(t)wi(2) + Ta(2), (3)
Ia(b;;(t) = (I1 —Iz)wl(t)wz(t) + Tz(t).

In this paper, we will study the problem of steering a spacecraft between given
attitudes g(¢0) = go and g(¢,) = g1 while minimizing a cost functional which both
measures the overall angular velocity and penalizes undesired attitudes during the
maneuver. By choosing this cost functional judiciously, we will ensure that the
angular velocities at the beginning and at the end of the maneuver take prescribed
values and also that forbidden pointing directions are avoided during the maneuver.

MATHEMATICAL BACKGROUND

Our approach is based on the observation that equation (1) can be considered
as a control problem on the Lie group SO(3) (with the angular velocities w; treated
as control inputs). This observation will enable us to use differential geometric tech-
niques in control theory!2. The characteristic features of the situation are captured
in the following problem formulation.

Basic Control Problem. Let G be a Lie group with Lie algebra g and let
(B1s...,E,) be a vector space basis of g. Consider a right-invariant dynamical
system §(t) = U(t)g(t) evolving on G where U(t) is the sum of a controlled term
Yo, ui(t)E; and o drift term Y1 +1 4iE; with given constants umi1,...,un. We
will be interested in finding controls ¢ +— u;(t) (where 1 <1 < m) steering thc system

from g(to) = go o g(t1) = g1-

To find suitable control laws which solve this motion planning problem, we
propose to introduce a minimization condition which the controls are required to
satisfy. This condition should be “reasonable”, but is not at all unique. The idea is
not so much that the minimization of a specific cost functional is a strict require-
ment, but rather that introducing such a cost functional makes available methods
from optimal control theory (specifically, Pontryagin’s Principle) as tools to find
solutions to our problem. We first consider the special case that the cost functional
does not explicitly depend on time.

Theorem 1. In the control problem described above, let the controls u] be
chosen in such a way that a cost functional L (I’(g(t),u(t))dt is minimized. Let

t — g*(t) be the resulting state trajectory in G so that g*(t) = U*(t)g*(t). Then
there exist a curve t — p*(t) in g* \ {0} and o number £ € R such that
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50) = —e5 (" (0,0°(1) - °0) 0 2d(U°(1) (4
p*()E; = —e—(g (%), u” (t)) (1<i<m). (5)

If m = n (i.e., if the system is fully actuated) then necessarily € # 0 (absence of
abnormal minimizers).

Proof. The Hamiltonian H : G X g* x R® — R of the system is H(g,p;u) :=
e®(g,u) + X i, uip(E;) where ¢ is either zero or an arbitrary nonzero number.
Pontryagin’s Principle shows that there is a curve ¢ +— p*(¢) in g* \ {0} with

F= GEOP ) = U050,
B (t) = —%f—(g*(t),p*(t);u*(t» — ' () 0ad(U*(2)),

%(y*(t),p*(t);u*(t)) =0 (1si<m)

for almost all £ € [to,#;]. This establishes equations (4) and (5). If m = n thene =0
would imply p*(f) = 0 (for almost all #) according to equation (5), contradicting
the choice of p*. Hence € # 0 in this case. =

We now consider a cost functional depending explicitly on time. The asso-
ciated optimal control problem will be reformulated as one with a time-invariant
cost functional by formally introducing time as an additional state variable. This
reformulated control problem will automatically contain a drift term (even if the
original control problem does not); hence the full generality of Theorem 1 is needed
in obtaining our result.

Theorem 2. In the conirol problem described above, let the controls ul be
chosen in such a way that a cost functional ft ®(g(t),u(t),t)dt is minimized. Let
t — g*(t) be the resulting state trajectory in G so that §*(t) = U*(t)g*(t). Moreover,
let P, 2 g xR — g and P, : g x R — R be the canonical projections of the direct
product g x R. Then there ezist a curve t — w*(t) in (g xR)*\ {(0,0)} and a number
€ € R such that

7*(t) = —e%‘gg(g*(t),u*(t),t) P, —e-——-(g*(t), *(£),8) oPo — x*(t)oad(T" (%)), (6)
7 (@B = o (6", w"(Et) (1S é <) )

If m =n then € can be chosen to be nonzero.
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Proof. Let 8(%) := e*; then any trajectory of the system g = Ug determines
a curve 7(t) := (g(t),é(t)) in the direct product I' := G x R* which satisfies
¥ = (Ch, uiB; + Eo)y where Eg := (0,1). Moreover, if P, : G x RY¥ — G and
P, : G x R* — RY denote the canonical projections, the cost functional can be
written as j; @ ((2), u(2)) where

B(1,u) = @ (Pi(7),u,log(P2(7)))

does not explicitly depend on time any more. The claim then follows immediately
by applying Theorem 1 to the control problem on I' of steering ~ from (go, e*) to
(91,¢€**) while minimizing ft (1(t),u(t))dt.

If m = n we can choose ¢ # 0. Otherwise an optimal control would be neces-
sarily independent of the cost functional, which implies that we could replace the
time-dependent cost functional by a time-invariant one. But for a time-invariant
cost functional the absence of abnormal minimizers was established in Theorem 1
already. =

ATTITUDE MANEUVERS

We will now apply the above results to attitude control.” To keep things sim-
ple, let us consider the case that a spacecraft shall be steered from rest to rest
between prescribed attitudes. (The method to be presented can, with a little ex-
tra effort, also be applied to maneuvers between arbitrarily prescribed rotational
states.) Moreover, let us assume that certain state constraints have to be taken
into account (such as the need to avoid the pointing of specified spacecraft axes
into forbidden directions or the requirement to stay close to a desirable reference
trajectory). We will forma.lly treat the angular velocities as control inputs and iry to
plan a maneuver which is “as smooth as possible” in the sense that a cost functional
measuring the overall angular velocity during the maneuver is minimized. To deal
with the state constraints we introduce a term in the cost functional which penalizes
undesirable attitudes during the maneuver. (This is reminiscent of a Lyapunov ap-
proach using artificial potential functions with peaks about undesired attitudes.?)
Moreover, in order to guarantee that a rest-to-rest maneuver is being planned, we
impose infinite penalties on nonzero angular velocities at the beginning and at the
end of the maneuver. Thus we are led to the optimal control problem of determining
the angular velocities ¢ — w}(t) which steer the spacecraft between the prescribed
attitudes while minimizing a cost functional of the form

/t (q(t) 3 wit)? +F(g(t),t)) dt (8)

i=1

where F is chosen according to the nature of the constraints to be considered and
where q is a positive weighting function with singularities at the start time #;, and
at the end time ¢;. (A typical choice for ¢ is depicted in Figure 1 below.)

92



\_

to t1

Figure 1: Typical choice for the weighting function g.

We will now apply Theorem 2 to solve this optimal control problem. Once this is
done, the torques required to implement the desired maneuver are found by simply
plugging the angular velocities ¢ — w} (%) into Euler’s equations (3).

Theorem 3. Consider the problem of steering a three-azis controlled spacecraft
between two specified attitudes g(tp) = go and g(t1) = g1 such that the cost functional
(8) is minimized. Denote the optimal angular velocities by t — w}(t) and let t —
g*(t) be the resulting attitude evolution. Then the functions Qi(t) = g(t)wi(t)
satisfy the differential equations

() = (0F/0g)(g*(1),1)[Bn] =: 1(g*(2).1),
Q(t) = (8F/09)(g*(t),t)[Ea) =: ®2(g*(2),1), (9)
Qa(t) = (OF/3g)(g"(t),t)[Es] =: @s(g"(2).1%).

Proof. Applying Theorem 2 with ¢ := —1, we obtain a curve { w*(t) in
(so(3) x R)* \ {(0,0)} such that for 1 < i < 3 we have 7*(¢)E; = §;(t) on the one
hand and '

. % "'_ aF * * * AT AR x* T AN * 5 T
OB = 5, (00O - 701 0)(F5 B + w3 (OF, Tl + w3 ()5, Fi)
=0
on the other hand; here the last term vanishes because of the bracket relations

[EI’EZ] = —FEs3, [E2a Es] = -F,, [Es,El} = —F,.

This yields the claim. -
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Combining the scalar functions §2; and ®; to vector-valued functions { and @,
respectively, and writing

0 w3 —Wa
L(w) = w1 B +wE; +w3E; = | —ws 0 wy (10)
w2 Wy 0

for all w € R3, we can succinctly formulate our result by stating that if the angular
velocities £ — w}(t) are optimally chosen with respect to the cost functional (8) and
if ¢ +» g*(t) is the corresponding attitude evolution, then the functions ¢ i g*(£)
and t — 2*(2) are solutions of the following system of coupled differential equations:

9(t) = q(®)'L(2(t))g(2),

Q) = @(g(2),1). (11)

BOUNDARY CONDITIONS

In addition to the differential equation (11), the two boundary conditions
g(to) = go and g(t1) = g, have to be satisfied. This is accomplished by follow-
ing a shooting procedure which we now describe. For s € R? let £ — (g,(t), 2.(2))
be the unique solution of the initial value problem

9t) = 4@ L(QD)9(@),  g(te) = g0,
Q) = ®(g(2),2), Qto) = s.
We want to adjust s in such a way that g,(¢;) = g1. To do so, we have to investi-

gate how the functions ¢ — (g,(t),Q,(#)) vary in dependence of the parameter s.
Therefore, we introduce the functions

(12)

ai(t,s) == %ﬁs(t) and Si(t,s) := %Q,(t) (13)

for which we will now derive differential equations. First,

Gift,8) = (8/Ds:) §s(t) = (8/0s:) q(t)™ L(Qs(2)) g5(2)

— (O LB ) o)+ (O LB aittrs). D

Second,

Bi(t,8) = (8/03:)Q(t) = (8/0s;) ®(gs(2),2)
= (88/09)(94(2),1) [ai(t, 8)gs(8)7*].
These differential equations are accompanied by the obvious initial conditions

ai(te,s) = (0/0si)gs(te) = (8/0s:) g0 =0, (16)
ﬂi(to,s) = (a/asi)ﬂs(to) = (8/63,-)3=e.-.

(15)
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From (1) and (14) we see that the functions 4;(t) := a;(2,s) + ga(t)i(?, )T gs(2)
satisfy the differential equations 4;(t) = ¢(t)~*L(9,(t)) Ai(¢) and thus, in view of
the initial condition 4;(¢9) = O, vanish identically; hence

ge(B)ei(t, ) = —cui(t, 8)gs(2)" . (17)

This last equation is, in fact, trivial because it simply expresses the fact that
ai(t,8)gs(t)"! is an element of so(3), which is clear from the very definition of
a;. The evaluation of the right-hand side of (15) is simplified by noting that (17)
can be rewritten in the form

g‘,(t)Tac,-(t,.sc)g,,(t)'1 = —a,-(t,s)T. (18)

The desired value of s is such that g,(¢;) = g1. The strategy is to first find
a reasonable initial guess s(°) and then apply a Newton-type algorithm to produce
improved values s(*),s(),... until the condition g,(¢;) = g; is satisfied within the
desired accuracy. Inserting the approximation

goras(ts) = go(t) + Y (Asi)ai(ts, ) (19)

i=1

into the target equation g,4+as(f1) = g1, we see that the update equation in the
Newton-type iteration is given by

3

S (Asaits,s) = 91— galta). (20)

i=1

In the next paragraph we will show how to find a reasonable initial estimate s(%).
This paragraph is interesting in its own right, because it yields a very simple al-
gorithm to perform a rest-to-rest maneuver between prescribed attitudes in the
absence of state constraints.

CONSTRAINT-FREE MANEUVERS

Let us for a moment ignore the presence of state constraints. Then we can
choose F = 0 in the cost functional, and the equations (9) simply state that the
functions 2; remain constant during the maneuver. The contents of the following
theorem is that the constants can be explicitly written down as functions of the
initial attitude go and the target attitude g;.

Theorem 4. Suppose we want to steer the spacecraft from the attitude g(to) =
go to the attitude g(t1) = g1 while minimizing the functional

/ 1 g(t) (w1 (t)® + wa(t)? + ws(2)?)dt. (21)

to
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Let v := g1gg " and o := arccos((trfy] —1)/2) and let Q be an antiderivative of 1/q.
Define constants ¢} as follows:

Y23 — '732}
(22)

21
1 a
€2 = : Y31 — 713
LgJ 2sina(Q(t) - Qt)) L’lz — 721
Then the optimal controls are given by w?(t) = ci/q(t) for 1 < i < 3, and the
torques which lead to these angular velocities are given by

Ti(2) —1 | Deid() + (L2 — Is)ezcs
Tz(t) = Izc;q.(t) - (I3 -1 )c;c;‘ . (23)
()| 1| Leti) + (L - L)t

The maneuver is such that any body-fized azis b € R3 rotates about the azis Ra
where

L(a) = gg' 91— 9?90 . (24)

Proof. From (9) we know that the functions Q; = gw! are constants, say

wi(t) = ci/q(t). Let C := c1 By +c2E2 +c3 E3; then the optimal trajectory t — g*(2)

in SO(3) satisfies §*(¢) = g(¢)"1Cg*(¢). This equation can be explicitly integrated.
In fact, Q being an antiderivative of 1/q, we have

() = exp((cz(t> - Q(to))C’) 7. (25)

The constants ¢; must be such that g(¢;) = g; which means that exp( [Q(t1) —
Q(%)IC ) = g10p ! = 4. Rodrigues’ formula then shows that ¢; = ¢f for 1 < i <
3. (Note that the equation cosa = (tr[y] — 1)/2 does not determine o uniquely.
However, since our optimization criterion requires ¢ + cZ + ¢2 and hence « to be as
small as possible, we really have a = arccos((tx[y] — 1)/2); whence the claim.) The
torques T; are then obtained by plugging in w = w! in Euler’s equations (3).

If b € R®is a body-fixed direction (i.e., if by, bs,b3 are the body-coordinates
of a unit vector rigidly attached to the spacecraft) then the motion of this axis in
space between u := gTb and v := g{b is given by

7O = of exp (—(Q(t) - Qlto)) L(c") b
= g5 exp (—(Q() ~ Q(t)) L(c*)) 9095 b (26)
= exp (—(Q(?) — Q(t0)) 95 (¢ )90) g5 b
= exp (—(Q(t) — Q1)) L(g5 <)) u
where we used the fact that C = L(c*). This shows that the body-axis rotates about
the axis spanned by & := gfc*. Note that if A := 2(Q(¢1) — Q())(sina)/a > 0
and if a := Ad then
L(a) = A-L(gge") = A-g5 L(c")go = g5 (v —7")g0

(27)
=.97(9197 — 9097 )90 = ga g1 — 97 go -
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CONSTRAINED MANEUVERS

We now consider the case that certain forbidden directions have to be avoided
during the maneuver. More precisely, we assume that a number of spacecraft axes
(expressed in terms of unit vectors b; € R® with respect to the body-fixed principal
axes system) and a number of pointing directions (expressed in terms of vector-
valued functions ¢ — dj(t) € R® with respect to the inertial reference system)
are specified in such a way that the j-th spacecraft axis is forbidden to coincide
with the j-th pointing direction at any time; in fact, the angle between these two
axes may be required to exceed a minimum angle @g.5.. Now it is easy to verify
whether or not a maneuver as in Theorem 3 meets this requirement. In fact, as was
shown before, each body-axis b; rotates about an axis Ra (uniquely determined by
the initial attitude and the target attitude) as shown in Figure 2, and the closest
possible angle between the rotating axis and a fixed space direction d; is given by
|8; — 8;| where 6; := Z(uj,a) = £(vj,a) and §; := Z(a,d;) (see Figure 3); hence
the maneuver given in Theorem 2 is safe if |0; — §;| > @sate for all j.

a

. e A

Figure 2: Motion of a body-axis dur- Figure 3: Checking the pointing con-
ing the maneuver. straints.

If the maneuver is not safe, then we can simply concatenate several maneuvers
of the same type each of which avoids the forbidden directions. We will explicitly
do so in the case that there is one axis for which there are two forbidden directions,
having in mind a cryogenically cooled space telescope for which the telescope di-
rection: is forbidden to coincide with either the sun or the moon direction. If the
circle C along which a maneuver as in Theorem 4 would carry the telescope axis is
found to be not safe due to one of the forbidden directions, say d;, then the other
forbidden direction d; can make only one of the two regions bounded by C unsafe,
but not both; hence (after replacing a by —a if necessary) we can assume that the
region containing a is safe for operations. (This is the case if (dz,a) < 0.) The idea
is now to slew the telescope axis from its initial position u to the axis direction a
and from there to the target direction v. The next theorem shows how to find 2
safe intermediate attitude g;.
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Theorem 5. Suppose we want to steer the 3pacecraft from the initial attitude
go to the target attitude gi. Let u := gTb and v := g¥b be the initial and the target
direction of the telescope azis b in space. Leta € R® be such that L(a) = g7 g1—g¥ go.
(This is the rotation azis for the maneuver as in Theorem 4.) Let A be the mairiz
with columns a, v and a X u and let B be the mairiz with columns b, 2(u,a)b— goa
and go(a X u), respectively. Then g; := BA™! is a safe intermediate attitude; i.e.,
performing two maneuvers as in Theorem 4 (first from go to gi, then from g; to g,)
avoids the forbidden directions.

Proof. The idea is to slew the telescope from u = gfb to a (which requires
a = g¥b, ie., g,a == b) along the great-circle through v and a (which requires
¢+ L(u x a) = g¥g; — g¥ go with a constant ¢ # 0). Then necessarily

giv = go(95 9i — 97 o) + gog{ gou = c- goL(u x a)u + goa
= C'!Jo(('u,a,)u -—a.) +g0a = (1—c)-goa+c:(u,a)d

and hence

1= gl = (1o +2¢(1~ ) (w, ) goa,B) + ¢*(a, 0)?
= (1-¢)®+ (u,a)%(2c—¢c?) = 1+c(c—2)]|juxa?

which implies ¢ = 2. Consequently, giu = 2(u,a)b — goa. Since g; € SO(3) we then
have
gile xu) = giax giw = bx (2(x,a)b - goa)
"=bx(—goa) = goaxb = goa x gor = go(a X u).

Hence g; necessarily maps a to b, u to 2(u,a)b — goa and a X v to go(a X u); this
determines g; uniquely. Since A maps e; to b, e2 to u and e; to @ x u and since B
maps e; to b, ez to 2(u,a)b — goa and e to go(a x u), this implies g; = BA™:. =

MANEUVER OPTIMIZATION

The maneuver proposed in the previous paragraph is a safe option (and possi-
bly useful in an on-board emergency mode), but does not yield an overall smooth
motion, as the spacecraft is artificially brought to rest at the maneuver midpoint.
Therefore, we propose to find a better solution by using a shooting procedure as de-
scribed above, taking as a starting point the maneuver determined in the constraint-
free case. As before, let b; be the spacecraft directions which are not allowed to
coincide with the forbxdden directions d;. Ift — g(t) denotes the spacecraft attitude
evolution then the angle ¢ ; between b; a.nd d; is given by cos p;(t) = (g(£)Td;,d;(t)).
Hence we will introduce a term of the form Z x((g(t) bj,d;(t))) in the cost func-
tional where x : [-1,1] — [0,00) is an increasing function takmo' relatively large
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values for arguments close to 1; such a term penalizes attitudes at which any of the
axes bj is close to the corresponding forbidden direction d;. (One may be tempted to
simply choose a function x : [~1, €08 pgate) — [0,00) with a singularity at cos psate,
thereby introducing a term which imposes infinite penalties on violations of the
pointing constraints. However, such a choice is not feasible, because the solutions
of the resulting differential equations usually run into singularities and hence do not
yield a solution of our control problem.) To guide the resulting spacecraft motion,
we will introduce an additional term which penalizes deviations from the reference
attitude evolution found for the unconstrained case, where the penalty is low close
to the forbidden attitudes and high in safe regions. This penalty term may explic-
itly depend on time, imposing higher penalties on deviations towards the end of the
maneuver. Thus in the cost functional (8) we will use a control term of the form

F(g,%) := Zx((gTbj,dj(t))) +p (Z x((yTbj,dj(t))),t) llg — geet(DI*  (28)

where the matrix norm ||-|| is the one derived from the inner product {(4,B)) :=

SIMULATION RESULTS

As an example, let us take the initial attitude go = 1 (identity matrix) and the
target attitude

0.25689 —0.95873 -0.12187

0.96593  0.25882  0.00000

Choosing the normalized time interval [to,%;] = [0,1] and the weighting function
g(t) := 1/( —#?), Theorem 4 yields the maneuver whose angular velocity evolutions
are given in Figure 4.

[0.03154 —0.11772 0.99255}
g =

- Figure 4: Angular velocities during one-leg maneuver.
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We now declare the direction d := (0.38209,0.73555, 0.55943)7 to be a forbid-
den direction for the body-axis b := (0,0,1)7 which we can interpret as a telescope
direction; here d is chosen as the direction of the telescope axis at time # = 0.5
during the above maneuver. To obtain a safe spacecraft motion, we split this ma-
neuver into two; following the procedure described in Theorem 5 we obtain a two-leg
maneuver whose angular velocity evolutions are given in Figure 5 below.

-4t

Figure 5: Angular velocities during two-leg maneuver.

The pointing requirement which is violated during the one-leg maneuver (see
Figure 6) is now met during the two-leg maneuver (see Figure 7).

175
175

150
125

150
125
100 100

15 75

% 50
25¢ | 25

¢.2 0.4 0.6 0.8 i 2.2 0.4 0.5 Q.3

. Figure 6: Angle between telescope Figure 7: Angle between telescope
axis and forbidden direction during axis and forbidden direction during
one-leg maneuver. . two-leg maneuver.
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It is instructive to compare how the target attitude gy is approached in both
maneuvers. To do so, we plot the deviation ¢ — ||g(¢) — g1]| in both cases. (See
Figure 8 and Figure 9 below.)

2.5 2.5
2 2
1.3 1.5
1 1
0.5 0.5
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 8: Deviation between current Figure 9: Deviation between current
attitude and target attitude during attitude and target attitude during
one-leg maneuver. two-leg maneuver.

Finally, we introduce a penalty term of the form (28) in the cost functional by
choosing x(z) := 100 - exp(z — 0.8) and p(z,t) := 1/z. The reference trajectory
t > gres(2) is the one obtained for the one-leg maneuver described above, and the
initial values of the functions ¢ — ¢(f)w}(t) for the first iteration are taken from
this maneuver. The shooting method described before converges fast; the angular
velocities of the resulting solution are given in Figure 10 below.

0.2 - 0.8 1

Figure 10: Angular velocities during optimized maneuver.
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Figure 11 shows how the target attitude is approached, and Figure 12 gives
the angle between the telescope axis and the forbidden space direction during the
maneuver. As shown, the forbidden direction is only barely avoided (by about
0.13%). Avoidance by a larger safety margin can be achieved by modifying the cost
functional.

A 175
2.5 150
2 125
1.5 100}
75
1 .
50
0.5 25
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 11: Deviation between cur- Figure 12: Angle between telescope
rent attitude and target attitude dur- axis and forbidden direction during
ing optimized maneuver. optimized maneuver.

To understand the scale in the deviation plots, we note that the maximum
deviation between two elements of SO(3) is given by

h = h—1 — 1 1
,hE80(3) llg — Al 9, AE50(3) llg = L Iy — 1l

= _max /Il - 26x(0) + 1P

= max /6—2tr(y) = rgg%\/6—2(1+2cos<p)

~+€SO(3)

= m$1/4-4cos(p = V8 ~ 2.828.
P

(29)
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Over 39 years and a long list of missions, the guidance, navigation, and
control (GN&C) groups at the Goddard Space Flight Center have
gradually developed approaches to the design and implementation of
successiful spacecraft attitude control systems. With the recent creation
of the Guidance, Navigation, and Control Center at Goddard, there is a
desire to document some of these design practices to help to ensure
their consistent application in the future.

In this paper, we will discuss the beginnings of this effort, drawing
primarily on the experience of one of the past attitude control system
(ACS) groups at Goddard (what was formerly known as Code 712, the
Guidance, Navigation, and Control Branch). We will discuss the analysis
and design methods and criteria used, including guidelines for linear and
nonlinear analysis, as well as the use of low- and high-fidelity simulation
for system design and verification of performance. Descriptions of typical
ACS sensor and actuator hardware will be shown, and typical
sensor/actuator suites for a variety of mission types detailed. A
description of the software and hardware test effort will be given, along
with an attempt to make some qualitative estimates on how much effort
is involved. The spacecraft and GN&C subsystem review cycles will be
discussed, giving an outline of what design reviews are typically held and
what information should be presented at each stage. Finally, we will point
out some of the lessons learned at Goddard.

INTRODUCTION

Throughout its history, the Goddard Space Flight Center has had a number of attitude control system
(ACS) branches and organizations devoted to the design, development, testing, and operation of the attitude
control and determination subsystems of spacecraft. During the many years and many projects with which
these groups have been involved, a number of practices, approaches, and lessons learned have been
developed that have led to a great many successful missions.

With the recent reorganization of engineering groups at Goddard, a number of attitude control and
navigation groups have been merged and combined within the new Guidance, Navigation, and Control
Center (GNCC). The approaches and material discussed in this paper primarily reflect the heritage of only
one of the antecedent groups to the GNCC, what was formerly Code 712, the Guidance, Navigation, and
Control Branch. Code 712 had primary responsibility for the mid-range and larger spacecraft designed and
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built at Goddard. Other groups, also part of the new GNCC, designed the ACS subsystems for the smaller
missions or were involved in ACS on-orbit operations. A paper written from the points of view of these
groups would reflect many of the same general approaches, though it would likely differ in emphasis.

The goal of this paper is to begin the work of documenting the different aspects of the ACS subsystem
design process. The paper will cover many topics very broadly in an attempt to give an overview of our
work and some feeling for our design approach. It is hoped that this effort will continue in a much more
complete and rigorous way, so that the ACS design heritage and expertise of the Goddard ACS groups can
be preserved for the future.

ACS SUPPORT FOR SPACECRAFT PROJECT PHASES

A typical spacecraft project goes through at least five general phases, four of which require the direct,
full participation of ACS engineers. These first four phases are the spacecraft conceptual design,
development, integration and test, and launch and early operations. Once a spacecraft is on-orbit and
- operating, ACS involvement usually is limited to support for special events such as orbit maneuvers,
anomaly resolution, and participation in end-of-life and other engineering tests.

Following is a list that summarizes many of the tasks that are performed by members of the ACS
subsystem throughout these phases of a spacecraft’s life.

1. Spacecraft ACS Conceptual Design
Support GN&C systems engineering in defining high-level analysis support
Support GN&C systems engineering in determining contractor support
Review project-level requirements with scientists
Develop GN&C mission-level requirements from project-level requirements
" Define ACS hardware requirements
Define ACS software requirements
Define attitude knowledge and control requirements
Define trajectory requirements
Design GN&C mission scenario
Develop control mode block diagrams
Develop control mode error budgets
2. System Development
Verify control mode rigid body stability margins
Develop a low-fidelity time domain simulation (LoFi)
Verify control mode pointing performance using LoFi
Perform structure modal reduction analysis -
Perform control mode flexible body stability margins analysis
Develop high-fidelity models of selected sensor and actuator hardware
Develop a nonlinear high-fidelity time domain simulation (HiFi)
Verify control mode error budget using HiFi
Verify control mode transitions using HiFi
Present at the Critical Design Review
Develop the ACS Algorithm Document
Support the definition of the flight software test facility
Write software test procedures that verify control mode requirements
Perform and evaluate results of control mode software testing
Support hardware procurement and hardware and software design reviews
3. Integration and Test (I&T)
¢ Develop and support spacecraft-level ACS hardware aliveness tests
¢  Develop and support spacecraft-level ACS hardware functionality test procedures
e Develop and support spacecraft-level ACS hardware phasing test procedures
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e Develop and support spacecraft-level ACS end-to-end tests

s  Develop on-orbit ACS procedures

¢ Develop and support ACS level Comprehensive Performance Tests
4. Launch and Early Operations

e  Determine on-orbit sensor and actuator calibration requirements
Develop mission operation center ACS telemetry page layouts
Support pre-launch mission operations
Support launch and early on-orbit activities
Support on-orbit sensor and actuator calibrations

The remainder of this paper will discuss these phases, and the different work that occurs in each, in
some more detail. The main concentration, again reflecting the experience of the authors and Code 712,
will be on the development and I&T phases, with a litle discussion on the systems engineering and
conceptual design phase.

SYSTEMS ENGINEERING AND DESIGN

ACS support for spacecraft development begins in the initial systems engineering and design effort,
which very often begins a number of years before a project is even approved. There are usually a variety of
study and “pre-Phase A” efforts involved in the very early spacecraft design; once a project is approved, it
enters a much more formal period of development and test.

During the early systems efforts, systems engineers and those who work directly with the ACS
subsystem begin the initial design task, taking the science and other mission requirements and using them
to design ACS requirements and a subsystem concept that will allow the spacecraft to successfully achieve
its science objectives. This early ACS design comprises the following steps:

1. Mission Concept Design: In this design phase, the object is to develop a concept that will allow
for the successful completion of the mission’s science objectives, within the imposed budgetary,
time, and other constraints. This mission concept encompasses all phases of the project, from
initial design and development, through test, launch, and operations. Specific to the ACS, an initial
design of the subsystem is created—including control modes and preliminary hardware sensor and
actuator complement—that will allow the mission concept to be successfully implemented.

2. ACS Level Requirements: Once the mission concept is developed, the mission-level
requirements must be used to generate subsidiary requirements for each subsystem. For the ACS,
this will typically mean requirements for pointing accuracy and stability, momentum management,
and orbit maneuvering and maintenance; as these requirements are developed and refined, they
can have a direct impact on the subsystem design, both algorithmic and hardware.

3. Error Budgets: With numerical ACS subsystem requirements in hand, it is necessary to develop
error budgets that parcel out the required performance goals and allowable errors to the different
parts of the subsystem. These budgets will define the type and quality of ACS hardware required,
as well as imposing performance and stability requirements on the control algorithms developed in
the design process.

4. Trade Studies: It is usually necessary to iterate on all of the above steps, generating a number of
options and possibilities for the different aspects of the design. Decisions made at the subsystem
level, both in the ACS subsystem and others, can have potential impacts in other subsystems and
on the system as a whole. The object of the early stages of the design is for the systems engineers,
aided by specialists in the different subsystem areas, to generate a viable preliminary design and
attainable set of requirements so that the design and development effort can continue with an
expectation of success. ’
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ACS ANALYSIS AND DESIGN

In the ACS analysis and design phase, the requirements and mission concept generated in the early
systems engineering effort is turned into reality—at least a mathematical and algorithmic reality, at this
point. The first step is to define the control modes—and relationships between modes—that can implement
the mission concept defined in the conceptual design of the spacecraft ACS. Then, for each mode, a linear
controller design and analysis must be performed.

For the majority of spacecraft attitude control systems, initial design is performed assuming a PD or
PID controller. Because of the relatively benign disturbance environment for most space missions, this
simple controller usually proves to be sufficient. Using a PD or PID controller and a linear J/s° plant to
model the spacecraft, beginning the design of controller gains and analysis of ACS performance is very
straightforward. As the physical design of the entire spacecraft becomes more mature, and mathematical
models of it more complete, a flexible mode analysis is done to ensure that the spacecraft ACS will not
. excite any uncontrolled oscillations during operation. Throughout the design process, simulations are
developed and run to verify the time-domain performance of the spacecraft.

A final aspect of the ACS algorithmic design does not apply specifically to the spacecraft performance
within a specific mode, but looks at the management of angular momentum across all modes. Depending
on the mission, all spacecraft will encounter a variety of disturbance inputs-—aerodynamic, gravity
gradient, solar pressure, and magnetic, to name the most common—that, over time, can cause a buildup of
system angular momentum within the spacecraft. A system for managing and off-loading this momentum
must be designed, as it will eventually affect the performance of the spacecraft ACS.

Control Mode Definition

Figure 1 shows an example control mode diagram from the MAP spacecraft. The six modes, five in the
spacecraft main ACS processor and one in the separate attitude control electronics (ACE) box, were
designed to meet the requirements derived from the mission requirements and concept for the MAP ACS
subsystem.

Linear System Design and Stability

It is during the linear ACS design and analysis phase of a project that the work most commonly
associated with the ACS analyst is done. For the large majority of spacecraft, the control laws used as the
basis for ACS design remain the same as those used 20 years ago. The initial design and stability analysis is
mainly concerned with using the available tools to decide what control law is needed, determine the
controller gains and other parameters needed to implement that control law, and then to verify its
performance and stability. As more information—such as system inertia matrices and flexible mode
analyses—becomes available, further analysis is performed to verify that sufficient performance and
stability margins still exist.

The bulk of the engineering judgement and expertise of the ACS analyst with respect to the linear
design come into play in two main areas. First, the initial design must include sufficient performance and
. stability margins so that, as more information about the’system becomes known and more fidelity is
included in the design models, the design continues to satisfy all performance and stability criteria. Second,
the control law and linear ACS design must be created and translated in such as a way so that it can be
turned into physical hardware and software on the spacecraft.
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Figure 1 MAP Control Modes

Design and Analysis Tools. Many of the design and analysis concepts used by today’s ACS analyst haven’t
changed from those used his or her predecessor, 20 or 30 years ago. The same collection of methods used
to characterize the performance and stability of systems modeled with linear equations has been used in the
aerospace industry for as long as it has been around. Of course, the way these tools are implemented has
changed quite a bit with the advent and increasing power of the computer. Today’s analyst may be creating
root locus, Bode, and Nichols plots much like analysts of the past, but he or she is generating them a lot
more quickly.

Figure 2 shows a collection of plots that represent some of the typical means of designing and
analyzing attitude control systems modeled with linear equations. Root Locus plots allow the designer to
work directly with the open- and closed-loop poles and zeros of the linear system; well-known relationships
can then be used to derive frequency- and time-domain characteristics, such as natural frequency and
damping ratio, rise time and settling time, for the resulting system. Bode and Nichols plots (as well as
Nyquist plots, an example of which is not shown) are alternate methods of displaying the same frequency-
domain information and characteristics of a system. The most important of these characteristics, as relates
to system stability, are the system gain and phase margins. These margins give a measure of how much
more or less gain and how much more phase lag a system can handle before it goes unstable. Adequate
margin is needed when designing a system modeled with linear equations to ensure that the real system will
remain stable and have acceptable performance in actual operation.

The final design tool used by the ACS analyst is the time-domain simulation. Through a variety of
simulations of varying degrees of fidelity, the performance of the control system is analyzed and verified.

As mentioned above, many of the design techniques used by ACS designers has remained the same.
The way in which the designer generates and makes use of these tools has changed, and is beginning to
change a lot more quickly, as computers become faster. For instance, using a software tool such as the
Interactive Control Design Module from Integrated Systems, the linear equations for a system and a
baseline controller can be set up, and the controller parameters can be changed and the resulting system
performance viewed in real-time.
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Figure 2 Linear Analysis and Design Techniques

Rigid Body Stability. The initial ACS design and analysis is usually done with a simple linear model of the
spacecraft, using only rigid body dynamics. At this stage of a project, it is usually not possibie to accurately
model any better than this. It is not until the physical design of spacecraft bus and instrument become more
mature that details of the flexible body characteristics of the system become available.

There are a number of design criteria that can be applied to a rigid body design. Of course, most of the
time-domain criteria are dictated by the requirements of the mission; these include things like slew rate and
pointing performance. Controller designs must first satisfy these requirements. However, there are a
number of criteria that determine the stability of a system that also must be satisfied. The criteria used are
the gain and phase margins of the system’. The margins that we typically use, which must be found with
respect to any commandable gain within the control system (i.e., controller gains, reaction wheel or other
actuator scale factors, etc.), are a gain margin of 12 dB and a phase margin of 40°.

Flexible Body Stability. Flexible body analysis is generally performed starting with a NASTRAN (or other
such) model of a system that gives the flexible mode frequencies and modal gains of a system. This list of
modes is reduced, based on the modal frequencies and gains compared to the bandwidth of the control
system, into a number of modes used for linear analysis. These modes are then included in the linear model
of the system as a series of second-order systems of the form:

K;

1

52 +2%0,5 + 0}
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The parameters K; and ¢« in Eq. (1) are the modal gain and frequency of mode i, respectively. The
parameter ¢ is the damping ratio of the flexible modes, which is consérvatively set to 0.001 (this translates
to an impulse response that takes approximately 5T = 5/g@ = 5000/ax seconds to die out?). With the
flexible modes in place, stability analysis is performed using the same desired gain and phase margins as
used above.

Performance

Along with determining the stability of a system, generally using frequency-domain techniques such as
Bode or Nichols plots, the performance of a system must be determined using time-domain simulations of
the system. Generally, three types of simulations are created and used during a project for analysis and
design. The first of these is a simple linear simulation, using the same linear model as that used for
frequency-domain analysis. Time-domain performance of such a model can be calculated analytically by
the same design package that is used to create Bode or Nichols plots, and is typically used as a first cut
during the early stages of the design.

Aside from simple linear models of a system, nonlinear models and simulation tools are used with both
low-fidelity (LoFi) and high-fidelity (HiFi) models of a system

Low Fidelity Simulations. Low-Fidelity (LoFi) simulations, like simple linear models, are typically used
during the early stages of an ACS design and analysis effort to broadly characterize the performance of the
system. LoFi simulations differ from linear models in that they typically include some nonlinear elements,
particularly mixed discrete and continuous systems to model the physical environment and dynamics of a
spacecraft along with the discrete controller. °

Typically, the LoFi simulation is used during the early design stages when there is likely to be a lot of
iteration back and forth between design and performance verification, and so a quick turnaround is highly
desirable. The intent of the LoFi is to show broad performance characteristics, enough to verify that the
design can meet the pointing, slew rate, and other criteria.

High Fidelity Simulations. Whereas a LoFi simulation is primarily a design tool, a high-fidelity (HiFi)
simulation is mainly used for design verification. HiFi simulations are created by including as much detail
into the simulation as possible, including such things as sensor and actuator performance and noise models,
environmental disturbances, quantization error, and even the ability to model non-ACS specific events such
as ACS processor warm and cold restarts. Also, as will be discussed in the ACS Flight Software section
later in this paper, automatic code generation tools can even allow the HiFi to be used to generate actual
flight software.

Figure 3 shows an example of a LoFi and HiFi spacecraft simulation. Notice that the LoFi shows a
fairly accurate portrayal of the “macro” performance of the control system. The HiFi, which is plotted on a -
much tighter scale, gives a better view on the “micro” level, showing the details of the system response in
the presence of noise and other disturbances.

Momentum Management

Design and analysis of the momentum management component of the ACS begins in the initial study
phase of a spacecraft design, and continues as the spacecraft design matures and the mathematical models
used for it continue to be developed. The following considerations and rules of thumb are used in its
design:

1. Identify the external torques that contribute to a build-up of system momentum. Typically, these
torques are gravity gradient, aerodynamic, and solar pressure. In low-Earth orbits, gravity gradient
and aerodynamic torques are the most significant; at higher orbits, the most significant external
torque is usually from solar pressure.
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_Figure 3 Low- and High-Fidelity Simulations

2. Select a momentum unloading control law. The two control laws generally used are referred to as
“B dot” and “HxB”. B dot does not require any hardware other than magnetic torquer bars and a
magnetometer, but leaves a residual spacecraft body rate equivalent to one or two revolutions per
Earth orbit, and will not dump momentum stored in the wheels. HxB, on the other hand does not
leave the spacecraft with a residual rate, but it also requires system momentum information
(typically from gyros and reaction wheel tachometers).

3. Using past missions in a similar orbit, analysis of worst-case environmental disturbance torques,
and LoFi simulations as a guide, make a first cut at magnetic torquer bar sizing.

4. Select torquer bar sizes including 100% margin. Inertia ratios, and other parameters that influence
the spacecraft response to environmental torques, will typically rise by more than 30% from the
initial sizing studies to launch.

5. Test the final design using the HiFi simulation. It is best to use a 36-hour test, so that a full 24
hours is covered to allow the Earth magnetic dipole to rotate in inertial space, with an additional
six hours of overlap on each side.

A similar approach, using similar margins, is taken when magnetic momentum unloading impractical
or impossible. Two other possible approaches to momentum unloading are using thrusters (which is very
quick and efficient, but requires expendable fuel) or, in higher orbits where the dominant disturbance
torque is solar pressure, by trimming the orientation of the solar panels with respect to the sunline.

ACS HARDWARE .

As the ACS is being designed by analysts, other ACS subsystem engineers are selecting and procuring
the hardware to be used to implement that design on the spacecraft. The hardware needed for the ACS
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subsystem can be divided up into three categories: flight hardware shared by the ACS and other spacecraft
subsystems, the ACS sensor, actuator, and other electronic hardware, and the hardware needed on the
ground to integrate and test the ACS system.

Depending on the design of a given system, the ACS will usually be implemented within the main
spacecraft processor, within a separate attitude control electronics (ACE) box, or sometimes both. The main
processor, along with the hardware and software that comprise the command and data handling (C&DH)
subsystem, are integral parts necessary for the successful operation of the ACS. Similarly, the attitude
control electronics, used as an interface between the control algorithms implemented in either the main
processor or a dedicated ACE processor and the sensor and actuator hardware. Also, instrument data is.
sometimes used for fine position sensing within the ACS.

Flight Sensor Hardware

There is a wide variety of ACS sensor and actuator hardware available for spacecraft missions—each
- piece of hardware has different characteristics of performance, cost, lifetime, and other criteria, that make it
applicable to a subset of the possible missions. In this section of the paper, we will give examples of some
of the major types of sensors and actuators. At the end of the section we will show a table containing some
representative mass, power, and performance numbers for some of the sensor types discussed.

Earth Sensor: Earth sensors detect the Earth’s horizons (actually, an infrared radiation band from the CO,
layer slightly above each horizon) as seen from space to provide two axes of attitude information with
respect to the geodetic nadir vector from the spacecraft to the Earth. Earth sensors cannot measure the yaw
angle about this vector. These sensors are very often used as the primary attitude sensors for Earth-pointing
spacecraft; even when the pointing requirements of the mission exceed the capabilities of an Earth sensor,
they are often used for Earth acquisition after launch and other maneuvers.

There are two general classes of Earth sensors. The first type, scanning Earth sensors, use a moving
optical head to detect where the horizon is. Static Earth sensors, on the other hand, are built to operate at a
given altitude range and have a fixed field-of-view designed to intersect the Earth horizon at one or more
points. In general, scanning sensors are heavier, use more power, and cost more (in addition to causing
attitude disturbances that may affect the science payload), but also have a larger range of operation and
greater pointing performance.

Digital Sun Sensor: Digital sun sensors are generally used to detect the orientation of a spacecraft with

respect to the vector from the spacecraft to the sun. Like an Earth sensor, sun sensors cannot measure the -
orientation of the spacecraft about this vector. Digital sun sensors can be used to give two axes of

information, and are generally used with other attitude measurements as part of a general attitude

determination algorithm, or to provide attitude updates to a Kalman filter.

Inertial Reference Unit: Inertial reference units are gyro/accelerometer packages that can be used as an
angular rate and acceleration sensor (to save cost, weight, and power, the accelerometers are often left out,
unless there is a structural resonance issue). They can also be used to propagate an attitude estimate
between measurements from an attitude sensor. Gyros are available in a wide range units, varying
considerably in mass, power, and capabilities.

Star Tracker: Star trackers are use to detect and track stars. By correlating measurements of the line of
sight vectors to multiple stars, the spacecraft’s current orientation with respect to an inertial reference frame
can be determined (the particular inertial frame used depends on that used to specify the star positions).

Most star trackers currently operate by providing information to the spacecraft processor about line-of-
sight vectors and magnitudes to detected stars. Algorithms in the processor, using an onboard star catalog,
identify the stars detected and use their defined positions to calculate the spacecraft attitude. In the event of
a spacecraft where this information is only needed for attitude knowledge, and not attitude control, this
processing may also be done on the ground. However, some of the newest star trackers now becoming
available are so-called “quaternion output” trackers—they have their own processor and built-in star
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catalog, and can directly output a quaternion expressing the orientation of the star tracker boresight with
respect to an inertial reference frame.

Mass (kg) _Power (W) Performance

Earth Sensor 0.69 0.5-2 20° field of view
(static) 0.25° accuracy
Earth Sensor 25 8 45° field of view
(scanning) 0.05-0.1° accuracy
Digital Sun Sensor 2 1.05 +32° field of view
0.017° accuracy
0.0039° resolution
Inertial Reference Unit 1.6-5.8 7.5-12 0.1-1 arcsec/pulse
(two-axis unit)
Star Tracker 8.1 12 8x8° field of view

3 arcsec accuracy

Other Sensors: In addition to the sensors discussed above, which are the typical sensors usually used by the
ACS mission mode controller, there are a number of other sensors that are generally included or can be
used on a spacecraft. These sensors fall into two general categories:

First, there are sensors used for a special purpose on a spacecraft, other than a normal mission mode
control. Two examples of this would be the course sun sensor, usually used as a part of a minimum
hardware sun acquisition control mode, and the three-axis magnetometer, usually used along with magnetic
torquer bars for momentum unloading. (It is interesting to note that algorithms, such as the “Contingency
Mode” developed for the TRMM spacecraft, have been developed and implemented that use magnetometer
measurements, along with measurements from other sensors, such as digital sun sensors, to generate a
mission mode attitude estimate.)

Second, there are a number of new technology attitude sensors that are in development and/or at the
experimental stage. These include the use of GPS signals in a differential mode to generate attitude
information, and a number of integrated star tracker/inertial reference unit sensors that generate both
attitude and attitude rate information.

Flight Actuator Hardware

Most spacecraft use one of two types of actuators for most of their flight actuator requirements.
Propulsion systems and thrusters are included on a spacecraft to perform orbit maneuvering and
stationkeeping, as well as for momentum management on spacecraft where magnetic torquer rods are not
sufficient (or usable, for non-Earth orbiting or high-Earth orbiting spacecraft). The ACS groups work
closely with the propulsion groups at Goddard to design a thruster system, where needed, that will satisfy
all spacecraft requirements for attitude, orbit, and momentum management. In general, though, most
spacecraft require reaction or momentum wheels as their primary actuator.

Reaction Wheel: A reaction wheel is used to apply or remove a rate from a spacecraft by making use of the
conservation of angular momentum. When torque is applied to a reaction wheel to get it to change its
rotation rate about a given axis, a corresponding torque and angular rate change is generated in the
spacecraft in the opposite direction. Two of the most important ways that reaction wheels are characterized
is through their momentum capacity and their torque authority—in general, larger wheels have more
capacity and can generate a larger torque, at the expense of more mass, power, and cost.

Mass (kg) Power (W) Performance
Reaction Wheel 2.55 5.5-9 (orbit average) 0.012-0.02 Nm torque authority
“Type A” 25 (peak) 4 Nms momentum capacity
Reaction Wheel 10.5 15-40 (orbit average) 0.3 Nm torque authority
“Type E” 280 (peak)
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50 Nms momentum capacity

Momentum wheels are similar to reaction wheels; generally, they provide lower torque, but have a
higher efficiency. Lastly, in addition to thrusters and wheels, magnetic torquer bars are often used by
spacecraft in low-Earth orbit for momentum management.

Test Hardware

In addition to the flight hardware that must be acquired to implement an ACS design on a spacecraft,
there is a large amount of additional hardware that is required for ground test purposes. Figure 4 shows an.
example of the hardware used for a hybrid dynamic simulator (HDS), used to provide ground-test
capability for a spacecraft, both software algorithms and flight hardware, from low-level testing through
final integration and test.
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Figure 4 HDS Hardware for ACS Testing

Multiple hardware test setups are typically required for many missions, allowing the ability to
concurrently test the main spacecraft processor, the independent attitude control electronics (if present), as
well as the ability to stimulate all flight hardware and hardware interfaces. The production of breadboard
and engineering test units (ETU) for many of the flight components adds to the cost and effort involved.
Depending on how the test effort is scheduled, very often completely different test “strings” are required to
allow for testing of ACS and C&DH functionality separately. When all of this additional hardware required
for the testing effort is considered, it becomes a significant fraction of the cost and effort associated with
the flight hardware,

ACS FLIGHT SOFTWARE

There are three major phases in the production of ACS flight software used to implement the control
laws developed to support the spacecraft mission. The first phase bridges the gap from the ACS design
described above to the flight software developers, usually through the means of an algorithm document.
Next, the ACS algorithms, along with all of the other necessary flight software functions, are developed for
the specific processors and hardware architecture selected for the spacecraft. Finally, perhaps most
importantly, software (and hardware, as discussed above) is developed and run to fully test the functions of
the flight software.
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ACS Algorithm Document

For the TRMM project, ACS analysts converted the algorithms needed to implement the controller into
FORTRAN-like syntax used in the TRMM ACS Algorithm Document®. This document was then provided
to the ACS flight software developers who used it as a guide to develop the C language routines necessary
to implement the algorithms on the spacecraft main and ACE processors.

One of the lessons learned from the TRMM experience is that the FORTRAN vs C syntax used for the
algorithm document and flight software, respectively, hampered the ability of the developers to correctly
interpret the algorithm document, as well as making it more difficult for the ACS designers to verify the
correctness of the code. Using similar syntax—which in this case would have meant using C-like syntax in
the algorithm document—would have made the process a lot easier.

Taking advantage of some of the advances in the technology of the control system design tools, a
slightly different approach to that used by TRMM is now possible. Products such as Documentlt from ISI
- allow documentation to be generated automatically from a system model, such as a HiFi simulation. The
documentation generated for the MAP ACS uses the software tool’s ability to create output meant for
display on the Web.

The ability to automatically generate documentation is only a small part of what is becoming possible
with the newest generation of ACS design tools. As will be discussed in the next section, there are several
tools available now that will automatically generate flight software from a system model, thus skipping the
algorithm to algorithm document to flight software translation process altogether.

Automatically-Genérated Code

Figure 5 shows an example block diagram from the MAP HiFi simulation, depicting the Observing
Mode controller. Instead of translating this controller into a written algorithm, which would then be coded
by the ACS flight software developers, by using ISI’s AutoCode ACS development tool, flight code for this
controller can be automatically generated.

There are a number of potential benefits to automatic code generation. Primarily, once confidence in
the code-generation tool is established, it should strengthen the testing effort. Because it is possible to
generate some of the flight code much more quickly using this method, it is possible to begin testing
earlier, and thus test more thoroughly. Also, because the algorithms are proven within the simulation
environment first, before the code is generated, a great deal of lower-level testing can be avoided.

The MAP program is one of the first at Goddard to use automatically generated flight software.
Because of this, the scope of what parts of the ACS were chosen to be AutoCoded was limited; even so,
approximately 1/3 of the MAP ACS flight software was automatically generated. The consulting group at
ISI, which has a lot more experience using automatic code generation, and the ISI tools in particular, has
reported even greater percentages of automatically generated code and improvements of the flight software
design cycle for the MSTI-1, MSTI-2, and MSTI-3 programs®,

Development vs Testing

Based on the experiences that we have had across many missions, it is safe to say that the flight
software testing effort is always underestimated. Just as software is developed to implement ACS
algorithms for flight, software test procedures are needed to test that software throughout the development
and integration and test phases of the project. The relative amount of effort needed for ACS flight software
development vs testing is roughly a 50/50 split between the two. This includes the manpower and time to
develop the software, either flight or test, and to run the tests; it doesn’t include ACS analyst support, but
that also tends to be pretty evenly split between the two activities.
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The relative effort assessments discussed above do not include that involved for configuration
management and maintenance of a system for tracking ACS parameters and for filing discrepancy reports
(DRs) for the different ACS subsystem components. One of the lessons learned from past programs that is
currently being applied is the use of a central database for maintaining the DRs and parameters used
throughout the ACS subsystem: HiFi simulation, flight software, and HDS. Because of this, it is fair to
consider this effort as a general overhead important to both the development and testing effort.

DESIGN REVIEW CYCLE

Each spacecraft goes through a number of design reviews, each of which has a different emphasis and -
reflects a different stage in the design process. While the specific names of the reviews for each project
may vary, the general topics covered at each stage tend to be the same. Some of the typical reviews and ~
topics covered, as they relate to the ACS subsystem, over the course of a project are discussed in this
section.

There is some overlap from one review to another, and a number of topics that will be covered in each.
In particular, every review will discuss design changes (and their impacts) and action items (and their
resolutions) since the last review, as well as outstanding issues and concerns.
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Figure 5 MAP Observing Mode Controller to be AutoCoded

Preliminary Design Review (PDR)

The first formal review is usually the Preliminary Design Review, or PDR. This is typically conducted
after enough time has passed for a first cut at an ACS subsystem: design has been done. The purpose of the
initial design and review is to develop a preliminary design for the complete ACS subsystem and to
determine the viability of the mission concept. If the mission has any “show stoppers”—mission
requirements that cannot be met within the budgetary, time, or other constraints imposed on the project—
they should be identified by the PDR. Also, major design issues should be identified. A list of topics
typically covered in a PDR is as follows:

1. Requirements
2. Subsystem Analysis
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Analyses Performed
ACS Modes
= Descriptions
- Stability
=  Performance
e  Other Topics (Attitude Determination/Error Budgets, Momentum Management)
3. Hardware
e  Procured Components
e In-House Development
4. Software
5. Operations
6. Testing

Critical Design Review (CDR)

The Critical Design Review (CDR) is the last subsystem-specific review conducted. By the time it is
conducted, the ACS design should be completed, analyzed, and tested to the point that it can be said and
demonstrated with confidence that the design will meet all requirements. Issues identified at the PDR
should be addressed and closed at the CDR. The design of other parts of the spacecraft should have -
matured by subsystem CDR so that flexible mode analysis is possible. The CDR will cover much of the
same material as the PDR, though the design should be more mature and finalized.

1. Requirements
2. Subsystem Analysis
e Status
-  Stability Analyses
-  Flexible Mode Analyses
- ACS Mode Description and Performance Summaries
s  Other Topics (Attitude Determination/Error Budgets, Momentum Management)
3. Noncompliance Summary/Open Issues
¢ Hardware :
e  Software

4. Failure Detection and Correction
5. Operations
6. Testing

Once all subsystems have had their CDRs, there is a spacecraft-level CDR that covers the complete
spacecraft, at a higher level. It is through this review, either on its own or with a separate confirmation
review, that it is decided whether or not the spacecraft design is complete and good enough to justify
continuing with the integration and test process.

Pre-Environmental Review (PER)

A Pre-Environmental Review (PER) is conducted immediately prior to the full spacecraft going into
environmental testing. The purpose of the review is to ensure that all outstanding issues from previous
reviews and I&T have been closed, and that a plan is in place for successfully testing spacecraft aliveness
and functionality as it goes through the different environments. Items typically covered in a PER include:

1. Hardware Qualification and Testing
¢  For Each Component:
- Hardware Description and Part Number
- Component Specification Document
- Manufacturer Environmental Testing and Total Running Time
- Delivery Date
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= Waivers
®  Functional/Aliveness Bench Tests
e  Electrical Integration Procedure
e  Performance Tests
2. Spacecraft Level Testing
®  Aliveness, Functional, and Phasing Tests
» Comprehensive Performance Testing CPT)
e  Dynamic Simulator Testing
3. Is the Spacecraft Ready for Environmental Testing?

Pre-Ship Review (PSR)

A review is conducted before a spacecraft is shipped to its launch site to determine if it is ready for
launch. This Pre-Ship Review would cover the following types of topics:

1. Events since PER

o  Spacecraft Tests w/Dates
«  Results
- Completion Status

»  Flight Hardware Operating Hours

¢  Anomalies Since PER
- Problem
- Cause of problem
- Current status

2. 1Is the Spacecraft Ready for Launch?

CONCLUSION

This paper has attempted to cover a lot of material very broadly, to give an idea of what is involved in
one approach to a successful spacecraft design. It is by no means the only approach to how to design a
spacecraft, nor is this paper meant to be a detailed blueprint of the design process. It is, instead, a summary
of some of the experiences that we have had at Goddard over the years, and is hopefully the first step in a
larger effort to document the design expertise currently present in the Guidance, Navigation, and Control
Center.
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Disturbance Accommodating Sliding Mode Controller
for Spacecraft Attitude Maneuvers

Jongrae Kim®*, Jinho Kim!, John L. Crassidist

In the absence of an external disturbance and uncertainty, sliding
mode (variable structure) control is guaranteed to asymptotically .
stabilize a system, which is provided by using a correction control
input calculated using a Lyapunov-type condition i.e., sliding mode
existence condition. When bounded unmodeled external torques are
added, the closed-loop system is no longer globally asymptotically sta-
ble since steady-state errors are present. The error can be minimized
by increasing the correction control gain or decreasing the thickness
of boundary layer of sliding mode control. But for limited actuator
capability the maximum control gain and the minimum thickness of
boundary layer being allowed may be restricted.

Disturbance accommodating control is a signal synthesis adaptive
control. For a short time interval the disturbance is assumed to be
modeled by a linear combination of previously selected basis func-
tions. A disturbance accommodating observer can be used to iden-
tify unmeasurable internal and external disturbances. In this paper,
sliding mode control is combined with disturbance accommodating
control (i.e., Disturbance Accommodating Sliding Mode Control) in
terms of modified Rodrigues parameters for a spacecraft attitude reg-
ulation and tracking maneuvers. The presented disturbance accom-
modating sliding mode control has the following advantages: 1) the
design procedure is more effective than the traditional sliding sur-
face stabilizing problem since steady-state errors are reduced, 2) the
designed disturbance accommodating observer is linear, and 3) the
robustness of sliding mode is guaranteed in the range of actuator
capability. Simulation results are shown that use the disturbance ac-
commodating sliding mode control to reduce steady-state errors in
the case of applied external disturbances.

INTRODUCTION

Sﬁacecraft attitude control for large-angle slewing maneuver poses a difficult
problem, including the nonlinear characteristics of the governing equation, modeling
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uncertainty and unexpected external disturbances. Sliding mode (variable structure)
control provides robustness with respect to modeling errors and is an effective method
for handling the nonlinear characteristics for attitude control. Variable structure con-
trol for multi-axial spacecraft attitude maneuvers was first presented by Dwyer and
Rammirez.! In their paper, the sliding surface is defined by the Rodrigues parameters
(gibbs vector). The Rodrigues parameters provide a minimal (i.e., three-dimensional)
parameterization. However, the Rodrigues parameters have a singularity for 180 deg
rotations. Vadali presented an optimal sliding manifold using error quaternions.? For
large angle maneuvers, quaternion feedback was presented by Wie and Barba.? A
quaternion feedback regulator was also presented by Wie, Weiss and Arapostathis.
Quaternions are nonsingular for any rotation, however, the use of quaternions re-
quires an extra parameter that leads to a nonminimal parameterization. Crassidis
and Markley developed a sliding mode controller for regulation and tracking problems
of spacecraft attitude control based on the modified Rodrigues parameters.> The ad-
vantages of using modified Rodrigues parameters include the following: 1) rotations
up to 360 deg are possible, and 2) the parameters form a minimal parameterization.®
Therefore, in this paper, sliding mode control based on modified Rodrigues parame-
ters is adopted. All of the above control laws are robust with respect to variations in
the moment of inertia tensor on the order of 10 - 20 %.°

One of the drawbacks of sliding mode control is the chattering problem due to dis-
turbance and modeling imprecision. For spacecraft attitude control, chattering may
be excite the higher frequencies of spacecraft and cause structural failure. Chattering
can be settled by smoothing the control input using boundary layer or bandwidth-
limited sliding mode control, which was presented by Dwyer and Kim?. However, a
globally suitable boundary layer thickness cannot be easily determined. Moreover,
for spacecraft attitude control it may be difficult to predict the external disturbances
acting on body. When bounded unmodeled external torques are added, the closed-
loop system is no longer globally asymptotically stable since a steady-state error is
present. The error can be minimized by increasing the correction control gain or
decreasing the thickness of boundary layer of sliding mode control. In this paper we
derive this relation using a Lyapunov function. But for limited actuator capability
the maximum correction control gain and the minimum thickness of boundary layer
being allowed may be restricted. Though the steady-state errors are usually small, in
a high-precision attitude pointing or tracking systems, these errors may not tolerable
for satisfying a mission requirement.

In this paper, we adopt disturbance accommodating control to minimize steady-
state errors in sliding mode control. The disturbance accommodating control concept
was first proposed by Johnson.'? External disturbances w(t) are assumed to sat-
isfy d™t'w(t)/dt™ = 0 differential equation where the external disturbances are
represented as mth-degree polynomials in time ¢ with unknown coefficients.’® Design
procedures and existence of the disturbance observer are presented in (Ref. 11, 12).
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This is extended to internal disturbances arising from uncertain plant parameter vari-
ations in (Ref. 13). Some design examples are shown in (Ref. 14), and applied to the
Hubble Telescope in (Ref. 15). A tutorial presentation of disturbance accommodating
control is shown in (Ref. 16). In these papers, a disturbance accommodating observer
is combined with a control method that provides linear behaviors in the responses
of the systems. Advantages of using disturbance accommodating observer include
the following: 1) it is linear, and 2) it also compensates the error due to modeling
uncertainty.

Combining sliding mode control with a disturbance accommodating observer (i.e.,
Disturbance Accommodating Sliding Mode Control) was presented by Kim, and was
applied to a robot manipulator for reducing the upper bound of bandwidth of slid-
ing mode control.)” In this paper sliding mode control based on modified Rodrigues
parameters is adopted for spacecraft attitude control. Also, a disturbance accom-
modating observer is combined with sliding mode control for reducing steady-state
errors due to external disturbances. Simulation results that use the disturbance ac-
commodating sliding mode control to reduce the steady-state error are shown for the
case of regulation and tracking maneuvers.

The organization of this paper proceeds as follows. First, a brief summary of
the kinematics and dynamics of a spacecraft is presented. Then, a brief overview of
the sliding mode control based on modified Rodrigues parameters is shown. Next, a
robust analysis of the sliding mode control with respect to external disturbances is
accomplished using a Lyapunov function. A disturbance accommodating observer is
derived for reducing the steady-state error. Also, sliding mode control and disturbance
accommodating observer are combined. Finally, simulation results are shown for
regulation and tracking of a spacecraft.

PROBLEM FORMULATION

In this section, a brief review of the kinematic equations of motion using modified
Rodrigues parameters, the rigid body dynamics, and sliding mode control based on
the kinematics is shown.

Attitude Kinematics and Dynamics

The modified Rodrigues parameters are defined by®
p = fitan (6/4) (1)

where p is a 3 X 1 vector, i is a unit vector corresponding to the axis of rotation
and 6 is the angle of rotation. The kinematic equations of spacecraft attitude motion
described in modified Rodrigues parameters are derived by using the spacecraft’s
angular velocity (w), given by®

b =1/4{(1 - p"p) Isxs + 2[px] + 2 pp7 } w )
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where pT is the transpose of p, Isx3 is a 3 x 3 identity matrix, and [px] isa 3 x 3
cross product matrix defined by

0 -ps po
[px] = [ Ps 0 -m ] (3)
-p2 m 0

The dynamic equation of motion for a rigid body with external disturbance (w) is
given by Euler’s equation, defined by

w=J"Jwx]w+ Jlu+ Jlw (4)

where, J is the spacecraft’s inertia (3 x 3) matrix, J~! is the inverse matrix of J, and
u is the control input torque (3 x 1) vector.

Sliding Mode Control

In this paper it is assumed that measurements of both the spacecraft attitude and
angular rate are available and the dynamics of actuator is neglected. The nonlinear
model for spacecraft motion is summarized by® ‘

p=F(p)w (5)
w=f(w+J lu+Jw (6)
where
F(p) =1/4{(1-p"p) Isxs +2[px] +2 pp”} (7)
f(w)=J ! Jwx]w (8)

Sliding mode control introduces velocity vector fields directed toward the sliding sur-
face or manifold (s = 0) in its immediate vicinity, where s is given by!

s =w —m(p) (9)
The quantity m(p) is defined using a desired vector field from the kinematic equation,
~ given by! '

m(p) = F~'(p)d(p) (10)

where
F'(p) =4(1+9"p) {(1 — p7P) Isxs + 2[px] + 2 PD”} (11)
The quantity d(p) is formed by allowing a linear behavior in the sliding motion, given

by®

d(p) = A (p — pa) (12)

where pq is the desired reference trajectory and A is a diagonal matrix with negative
elements. The input by sliding mode control is divided into two parts. The first is the
equivalent control u,, for satisfying the ideal sliding mode conditions (i.e., invariant
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conditions). The second is the correction control u. for satisfying the sliding mode
existence conditions.! As a result, the control input is given by*

U = Ugg + Uer (13)

where
o = =7 {£0) - G2 F(@) o) + 1 (19
U, = —JKsat(s, €) (15)

where K is a 3 x 3 positive definite diagonal matrix. The saturation function is used
to minimize chattering in the control torques. The function is defined by

1. ifs;>e€
sat(s;,€) =1 sife if|s| <€ (16)
-1 ifs;<e

The detail descriptions of the quantities m(p) and dm/8p for the regulation and the
tracking problems can be found in (Ref. 5).

CONTROL DESIGN

In this section a robust analysis of the sliding mode control with respect to
a external disturbance is accomplished using a Lyapunov function. A disturbance
accommodating observer is also derived for reducing the steady-state error. Finally
sliding mode control and disturbance accommodating observer are combined.

Robust Analysis of Sliding Mode Control

We use the following candidate Lyapunov function V to study global stability of
the motion by sliding mode control.?

1
V= —2-sTJ s (17)
Define an error torque Aw using an estimated external disturbance W and the actual
external disturbance through®
Aw=w-w (18)

The first time derivative of the candidate Lyapunov function with the control input
reduces to® .
V = —sTJK sat(s, €) — sTAw (19)

Note that in the absence of an external disturbance estimation error, this system is
guaranteed to be globally asymptotically stable. If bounded unmodeled disturbances
are added, but not compensated for in the control law, the system is no longer asymp-
totically stable. If K is large enough so that s” J K sat(s, €) is larger than sT Aw, then
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V is guaranteed to be negative. Substituting the control torque into the first time
derivative of sliding function, the following dynamics is obtained®

$ = —Ksat(s,e) — J ' Aw (20)

We assume that the thickness of boundary layer ¢ is sufficiently small and the cor-
rection control gain K is sufficiently large to keep the time derivative of Lyapunov
function negative-definite with bounded external disturbances in the region of the
outer boundary layer. In the boundary layer the dynamics of sliding function is given
by K

§=-—s- JlAw (21)
If the estimation error of external disturbance settles to a value and the sliding func-
tion s must settle to a finite constant steady-state value s,,. Setting the derivative in
the dynamics of sliding function to zero we obtain®

0= -%s,, - J 1 Aw (22)

Therefore the steady-state value of sliding function (i.e., tracking error) will converge
to the following finite offset®

Sgs = ——;{-J_]‘AW (23)

The tracking error will not converge to zero but to a finite offset. This offset can be
reduced to fall within acceptable limits by decreasing the boundary layer thickness €
or increasing the correction control gain K. However, decreasing the boundary layer
or increasing the correction control gain will limit the error recovery performance by
saturating the actuator or will cause high frequency chattering in the actuator.® For
high-precision attitude tracking, this small error offset or the high gain may not be
acceptable. The steady-state error can also be reduced by making Aw smaller.

Disturbance Accommodating Observer

The uncertainty associated with some internal and external disturbances w(%)
is represented by a semideterministic waveform-model description of the generalized
spline-function type, given by!®

w(t) = c1fi(t) + cafot) + -+« + Cmfm() (24)

where the basis functions f,(t), fa(t), - -+ fm(t) are completely known and the con-
stant weighting coefficient vectors ¢y, ¢z, -+ ¢, are totally unknown and may jump
in value from time to time. Without loss of generality, it is further assumed that the
basis functions f;(t) satisfy a linear differential equation. As a consequence, there
exists a linear dynamical “state model” representation as follows:!6

w(t) = H(t)z (25)
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i = D(t)z + o(t) (26)

where H(t), D(t) are completely known and o(£) is a vector of impulse sequences
representing jumps in the ¢; which are sparse but otherwise totally unknown. The
waveform and state models have been successfully used to represent plant model
errors associated with the following items:'®

1. coulomb and other complex forms of nonlinear damping
2. uncertain external input disturbances

3. plant parameter model errors

4. coupling effects in reduced-order state models

The basis functions can be chosen as power series in time £ or as orthogonal poly-
nomials commonly used in approximation theory.l® The design procedure and the
existence problem of the appropriate observer with the stabilizing gain was shown in
(Ref. 12).

Disturbance Accommodating Sliding Mode Control

In this paper we divide the control input into the equivalent control input u., and
the correction control input u,, of the sliding mode control and the disturbance ac-
commodating control input ug,,. for canceling the effects of external disturbances.1®

U = Ugy + Ugr + Ugge (27)

After applying the control input to the dynamics of the sliding function, the dynamics
and the disturbance model can be written in the following state-space form:!6:17

§ = Jlug+J Muge+J 7w (28)
z = D(t)z+o(t) (29)
= H(t)z (30)

The appropriate disturbance accommodating observer is given by!?

= D) — Ko(z —2) (31)

d w-

where, Kj is the observer gain (9 x 9) matrix which provides sufficient time constants
in the observer. We adopt the three basis functions as 1, ¢, t? for each body axis
(ie.,2=1, 2, 3).

wi(t) = ¢, + ot + ¢3¢t (33)
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We assume that the time derivative of the jerk of external disturbance is zero (i.e.,
d®w;(t)/dt® = 0), so that H;, D; are given by

H =[100] (34)
010

Di=[001} (35)
000

All the matrices in the observer are constant, however, the observer in Eq. (31)
cannot be directly implemented due to the unmeasurable state z. Define a new state
variable Q as follows:!7

Q=2z-K;s (36)

where K; is a gain matrix (9 x 3). The gain K; can be tuned to satisfy the following
condition:'?

Ko+ K,H=0 (37)

Finally, the modified observer composed by the measurable or known states is derived
as follows:18 ”

Q= (D+Ko)Q+ (D + Ko) K8 — Ky J (U + Ugac) (38)

where the initial condition is given by Q(0) = —K;s(0). Then, the estimation error
dynamics becomes!®

AQ — (D + Ko) AQ = —o(t) (39)

where
AQ = (2 - Kls) - (Z - Kls) (40)

If the gain K|, is large enough so that the error dynamics is stable and converges fast,
then the tracking error offset is reduced. The designed observer is linear and it can
be easily implemented in digital software. One of drawbacks of the observer is that
the sensor noise is amplified by the gain at the output of the observer. In this case we
cannot use the reduced observer form, and have to implement a observer to estimate
the state s.

A brief description of the control and system is shown in Figure 1. The estimated
states Z, W and ug,. are calculated by the following relation:1%:17

z = Q+Kis (41)
% = Hz (42)
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SIMULATION
The inertia matrix of the simulated spacecraft is given by®
J = diag[ 114 86 87 | [kg m?] (44)

The initial conditions for the angular velocity are set to zero. The boundary layer
thickness € in the saturation controller is set to 0.01.% Also, the control torques are
limited to 1.0 N-m.® The simulations are performed by Runge-Kutta 5 method in
simulink in MATLAB with a maximum step size of 1 sec, minimum step size of
0.0001 sec and a tolerance 1.0 x 10~%. The external disturbances applied to each
body axis are set to 0.3sin(£/10) N-m. The observer gain K, for each body axis (i.e.,
i=1, 2, 3) is calculated using a pole-placement method as the following:

-30.0 0 O
Ko, =| -3000 0 O (45)
-1000.0 0 O
Simulation cases for the regulation and tracking problems are given by
1. Case A: Sliding Mode Control without the external disturbances
2. Case B: Sliding Mode Control with the external disturbances

3. Case C: Disturbance Accommodating Sliding Mode Control with the external
disturbances

Regulation
The initial conditions for the modified Rodrigues parameters are given by

pO=[-01 05 10] (46)

The rotation for the initial conditions is approximately 206 deg. The diagonal el-
ements of the correction control gain K are all set to 0.0015 and the constant A
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(the diagonal term of A) is set to -0.015 sec™!. The sliding function trajectories of
modified Rodrigues parameters for each case are shown in Figure 2. As shown in
Figure 2, the trajectory of Case B oscillates in the boundary layer. In Case C, when
disturbance accommodating sliding mode control applied the trajectory is almost the
same as the one of Case A. The estimation errors, Aw, are shown in Figure 3. The
maximum estimation errors for each body axes are smaller than 1.7 % with respect
to the maximum external torques.
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Figure 2 Regulation: Sliding Function Trajectories
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Figure 3 Regulation: Estimation Errors Aw
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Tracking

The initial conditions for the angular velocity and the modified Rodrigues pa-
rameters are set to zero. The diagonal elements of the correction control gain K are
set to 0.03 and the constant ) is set to -0.3 sec™!. The desired trajectories of modified
Rodrigues parameter pq are given by

Pa, = 0.05sin(0.005¢) (47)
pi, = 0.05sin(0.006¢) (48)
ps, = —0.05sin(0.007%) (49)

The sliding function trajectories for each case are shown in Figure 4. As shown in
Figure 4, the trajectory of Case B oscillates up and down through the trajectory of
Case A. In Case C, when disturbance accommodating sliding mode control applied
the trajectory is almost the same as the one of Case A. The estimation errors, Aw,
are shown in Figure 5. The maximum estimation errors for each body axes are smaller
than 17 % with respect to the maximum external torques.
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Figure 4 Tracking: Sliding Function Trajectories

CONCLUSION

A method for compensating the steady-state error of sliding mode control due
to external disturbance was presented and applied to spacecraft attitude maneuvers.
The presented disturbance accommodating sliding mode control include the follow-
ing advantages: 1) the design procedure is more effective than the traditional sliding
surface stabilizing problem since steady-state errors are reduced, 2) the designed
disturbance accommodating observer is linear allowing the use of many design and
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analysis methods for linear systems, and 3) the robustness of sliding mode is guar-
anteed in the range of actuator capability. Simulation results indicate that the new
algorithm was able to reduce the upper bound of the steady-state error.
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Figure 5 Tracking: Estimation Errors Aw
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ABSTRACT

This paper introduces a nonlinear reorientation and attitude controller based
on feedback linearization, Besides user-prescribed maximum and minimum gain
values, the controller requires no tuning, and is applicable to arbitrary rigid spacecraft
configurations. The user needs to input only data pertaining to the physical problem
setup, such as the spacecraft’s inertia mafrix, initial conditions, target orientation,
target angular velocity, control constraint, and slew rate limit. Global asymptotic
stability is guaranteed. The controller is computationally inexpensive, and numerical
tests show excellent performance in terms of transient behavior and overall maneuver
time.
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IMPROVEMENT OF ORBIT DETERMINATION AND PREDICTION
ACCURACY OF ADEOS/RIS

Mina Ogawa', Maki Maeda®, Mikio Sawabe, Masao Hirota®,
and Yousuke Yamamoto't

The Advanced Earth Observing Satellite (hereafter ADEOS) was
launched on August 17th, 1996 and its operation was terminated on the
end of June 1997. The ADECS carries a large aperture laser-reflector,
referred as "Retoreflecior-in-Space”(RIS). In order to hit laser
properly onto the RIS, we need a trajectory prediction with accuracy of
about 100 m. The flight-dynamics team at the NASDA/TACC (Tracking
and Control Center) ordinarily derives a satellite trajectory with Range
and Range Rate (RARR) measurements using S-band radio wave.
However, the trajectory prediction is expected to be only as accurate as
1 km forthe ADEOS. This uncertainty is not acceptabie for the RIS.

Although the operation of the ADEOS was terminated, NASDAkeeps on
making every efort to improve the accuracy of trajectory determination
and propagafion of the ADEOS/RIS with Satellite Laser Ranging (SLR)
data obtained at world-wide SLR ground stations. As a result we
achieved a hundred-fold and a ten-fold improvement on accuracy of orbit
determination and prediction respectively.

This paper presents the summary of the experiment and the latest
results. A bref discussion of the post-ADEOS mission plan will be
found in this paper as well.

INTRODUCTION

Satellite laser ranging (SLR) measurement with a pulse laser beam is one of means for
measuring a distance between a ground station and a satellite. = SLR measurement provides more
accurate trajectory than that derived from the Range and Range Rate (RARR) measurement with
radio wave. '

The Advanced Earth Observing Satellite (ADEOS), launched into space on August 17, 1996,
by National Space Development Agency of Japan (NASDA), and its operation was terminated on the
end of June 1997. One of the sensors on board the ADECS is a hollow laser reflector called
Retroreflector-In-Space ( RIS ) (see Figure 1) provided by the Japanese Environment Agency ( EA ).

T National Space Development Agency of :lapan (NASDA), Sengen 2-1-1, Tsukuba, Ibaraki, 305-8505, Japan
H Fujitsu Limited, Nakase 1-9-3, Mihama-ku, Chiba-shi, Chiba, 261-8588, Japan
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The effective diameter of the RIS is 0.5 m (see Figure 1) and the large surface area enables it to
reflect back a large fraction of energy throughput of a laser beam from a ground station without
being suffered from satellite jittering. The ADEOS/RIS is originally designed to measure
absorption spectrum in a reflected laser beam due to a small amount of Ozone, Methane, and other
compounds found in the atmosphere.  With the RIS on board the ADEQS, we plan to develop a
prototype scheme of advanced trajectory determination system for future NASDA satellite missions.
The finalized scheme, called “Global and high accUracy Trajectory determination System” (GUTYS)
will be designed to utilize both SLR and differential GPS (Global Positioning System) measurement,
and would be able to derive a satellite orbit within a accuracy of 25 cm when a satellite is in orbit
at altitude of about 800 km. The finalized scheme will be in operation by the year of 2003.
Final goal of our systemis a accuracy of 20 cm using SLR short arc data obtained multi-stations’
simultaneously. '

S

Figure1 Retrareflector-In-Space
In this paper we discuss the following items:

-- Data delivery system for the ADEOS/RIS.

-- Observations with the ADEOS/RIS.

-- Accuracy of trajectory determination using long arc data.

-- Accuracy of trajectory prediction.

-- Effects on accuracy of trajectory determination by each observation and force model.

. Comparison of trajectory determination accuracy using SLR data and using RARR
data. :
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DATA DELIVERY SYSTEM FOR THE ADEOS/RIS

In order to point a laser beam accurately to the RIS, we must provide high precision orbital
parameters to a designated SLR station. Currently uncertainty of a satellite’s position must be as
small as 100 m for a successful SLR observation, and the orbital solution is also expected to be
valid as long as a time interval of 3 days.

As a mean to deliver such a high precision trajectory ephemeris, the NASDA and the
Communication Research Laboratory (CRL) have established a data delivery link for the
ADEOS/RIS experiment (Figure 2). The CRL is responsible for distributing and archiving of
every SLR data taken with the ADECS/RIS, while the NASDA develops a scheme for estimating
accurate trajectory of the ADEQS satellite and predicting its position prior to the next RIS
observation.

First, SLR data obtained at SLR stations around the world (Figure 3) are collected at the CRL
through E-mail and/or -anonymous file transfer protocol (FTP) via Internet.  Second, all of the SLR
data are automatically transmitted to the Tsukuba Space Center (TKSC), NASDA, via the Earth
Observation Center (EOC), NASDA, by using also E-mail and FTP through a network dedicated for
this purpose (the data transfer rate is about 1.5 Mbps).

Then, after accumulating sufficient amount of the SLR data, the NASDA analyzes all of the
collected data and make available estimated satellite’s orbital parameters with high precision prior
to the next SLR measurement.

These parameters are provided in a standard format for transferring Tuned Interrange
Vector (TIRV) and time bias function. TIRV contains orbital elements estimated at a certain
epoch, and predicted orbital elements derived at every 0 UTC. Time bias function is defined as a
difference expressed in terms of time between the latest estimated orbital element and the latest
observation. Using these information, SLR station is tracking the spacecrafts.

. The predicted orbital positions are weekly transmitted back from the NASDA to each SLR
station in a reverse order of the passage mentioned above. TIRV is derived once per week and
time bias function is derived two times per week?’.

If the SLR data collected in one week are not enough to determine the ADECS orbit, TIRV
should be derived from RARR measurement with S-band radio wave or 2-line elements received
from the GODDARD Space Flight Center, NASA.
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OBSERVATION WITH THE ADEOS/RIS
We have been collecting the ADEOS/RIS SLR data since October 30, 1996.

The collected

data number as of April 1, 1998, are 762 passes from 28 SLR stations, including 5 passes obtained

after the end of ADECS’s operation.
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amics Data Information System (CDDIS). Those data were not used for tracking ADEOS/RIS
wmly for analyses. Table 1 shows the summary of the ADEOS/RIS data obtained at each SLR
on, from October 30, 1996 to June 30, 1997 and after the termination of the ADEOS operation.

Tabie 1
SUMMARY OF THE ADEOS/RIS DATA
1996.10.30-1997.6.30 1997.7.1-
STATIONID  STATION NAME NBER e NOMEER e AVERAGE
passes  OfDATA  pagsps  OfDATA  prvisimm)*
1864 MAIDANAK 25 192 1380
1868 KOMSOMOLSK 15 61 58.1
1870 MENDELEEVO m 279 1 4 753
1873 SIMEIS 7 37 280
1893 KATSIVELY 2 9 123
7080 FORT DAVIS 17 85 17.5%%
7090 YARAGADEE 3 50 86
7105 WASHINGTON 2 142 1 12 10.1%%
7109 QUINCY 4 23 73%s
7110 MONUMENT PEAK 4 242 90
7210 MAUI 13 66 10.1
7236 WUHAN 1 4 89
7237 CHANGCHUN 52 414 586
7249 BEUING 38 271 462
7308 TOKYO 7 68 531
7403 AREQUIPA 13 53 87
7404 TLRS-2(SANTIAGO) 1 6 333
7548 CAGLIARI 1 55 147
7805 METSAHOVI 52 390 i 3 331
7810 ZIMMERWALD 1 15 1.0
7824 SAN FERNANDO 43 47 1 6 50.5
7831 HELWAN 1 10 253
7837 SHANGHAI 5 18 365
7838 SIMOSATO 48 578 339
7840 HERSTMONCHEUX 126 579 1 1 9.9
7843 CANBERRA 84 s64 84
7939 MATERA 30 172 846
3834 WETTZELL 40 360 26
TOTAL 757 5190 - 26

* Average of RMS of normal point data
** after data rejection

TRAJECTORY DETERMINATION AND PREDICTION

Trajectory Accuracy Improvement

The NASDA keeps on improving the accuracy of orbit determination and prediction of the
ADEOS/RIS by updating the software models of the ADEOS/RIS analysis system. At first, we
applied Tropospheric refraction correction?, center of mass correction, and GEM-T3 which is more
accurate geopotential model than that for the ADEQS routine operation ( Ref. 3,4 ), and achieved a
ten-fold improvement on accuracy of trajectory determination. For further improvement, we
applied much more accurate geopotential model JGM-3 and earth radiation pressure, and reduced
the uncertainly of SLR station position.
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In this chapter, the latest models and results of the ADEOS/RIS trajectory determination and
prediction will be reported.

Condition of Trajectory Determination and Prediction

We determined the ADEOS/RIS trajectory using a few days data arc with about one day of
overlap between dataarcs (Figure 4). During the ADEOS/RIS operation, the NASDA used 3 days
data arc and 0.5 days of overlap. Estimated parameters are an orbital element, solar radiation
pressure modification rate I';, and air drag modification rate p,.

P.=Pull ¥+ p,) p.:actual atmosphere density Pn:- model atmosphere density

T,=T,(1 +1I) T',: actual solar radiation pressure I',: model solar radiation pressure

The NASDA used the NASDA Orbit Computing System ( NOCS on a main frame or NOCSZ2 on
EWSs ) for the ADEQS routine operation, and uses proto-type GUTS for the ADEOS/RIS analysis.
Parameters and software models considered in the ADEOS operation and our analysis are shown in

Appendix A. The conditions of trajectory determination are mostly according to the ADEQOS/RIS
Tracking Standards * and the IERS standards 19925, ’

0.5 days

jata arc 0.5 days

data arc
= | %
- data arc

A\Overlapped period

Figure 4 Data Span far Trajectory Detemination (long arc)

Accuracy of Trajectory Determination usingLong Arc Data

We investigate accuracy of trajectory determination by comparing orbits during time span
where one data arc and the next data arc overlap, since a trajectory of a spacecraft must be
continuous. In order to get enough pass in the period of overlap between data arcs, in this section
we use 4 days dataarc with 1 day of overlap. Table 2 shows sample of SLR data taken with the
ADEOQS/RIS, its O-C and the estimated value of p, and T, scale factor parameters using the latest
and full software models. Table 3 shows the accuracy of trajectory determination, and Figure 5
shows the difference between the trajectory derived from arc No. 1 and that from arc No. 2.

The uncertainty for a trajectory position in the along track is determined to be about 0.4 to 2
meters for the ADECS (Table 3). A similar analysis conducted using 3.5 days data arc with 0.5
days of overlap resulted in 20 to 75 meters as uncertainty in the along track (Ref. 4). So, we can
say that we achieved a ten-fold improvement on accuracy of trajectory determination from ‘former
analysis in Reference 4.
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Table 2
DATA SPAN, O-C RMS AND ESTIMATED PARAMETERS

Arc No. Start (UTC) End (UTC) Pass Site Data O-C RMS(m) o1 |31

1 1996/10/30 3h 1996/11/02 12h 15 8 101 0.303 0.301 0.449
2 1996/11/02 3h 1996/11/05 11h 10 7 61 0.210 0.298 0.408
3 1996/11/05 8h 1996/11/08 2ih 14 8 83 0.366 0.350 0.440
4 1996/11/08 2h 1996/11/11 19h 16 8 100 0.232 0.410 0.492
Table 3
ACCURACY OF TRAJECTORY DETERMINATION
Overlap span (UTC) Difference in Position(m)
Arc Along Cross

Start (UTC) End(UTC) Pass Site Radial RSS

No. Track Track

1-2 1996/11/02 Oh - 1996/11/030h 3 3 0.130 0.446 0.275 0.540
2-3 1996/11/05 Oh - 1996/11/06 0h 2 2 0.725 2.022 1.323 2.523
34 1996/11/08 Oh - 1996/11/090h 5 5 0.126 0.402 1.392 1.454

(m)
1.40
x
1.20 eRadial m | ¥
= Along Track . x| %
1.00 \aCross Track x H
KRSS

-0.60
1996/11/2 (.00 2:00 4:00 6:00 800 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00
Time(UTC)

Figure 5 Comparing orbits during the overlapped period '
Accuracy of Trajectory Prediction

We use orbital parameters determined with 4 days arc data(Table 2) in order to investigate
an error of a trajectory prediction. For anexample, difference between orbital parameters in the
data ares No. 1 and No. 2 is defined as an error of trajectory prediction for the next three days, and
difference between No. 1 and No. 3 is defined as an error for the next six days (see Figure 6).
This scheme provides prediction errors for a total of 9-days period.
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Figure 6 Scheme for estimating an error of trajectary prediction

In Table 4, one of examples for the error estimate is shown. "Epoch” is the point which
evaluate two orbital element and that is the epoch of determined orbital element, too.

The orbit predicted from the orbital element No. 1 differs about 2.6 m from the orbital
element No. 2. In other words, the prediction accuracy is 2.6 m in three days. Although the
other data show different values in the accuracy, the values are constantly under 30 meters that
satisfies our main requirement for a successful SLR measurement. However, we must note that
this result is only accurate for a period of low solar activity. .

Table 4
DIFFERENCE BETWEEN PREDICTED ORBIT AND REFERENCE ORBIT (m RMS)

Predicted orbit Predicted orbit Predicted orbit

Epoch Reference orbit from No.1 from No.2 from No.3
1996/11/02 Oh No.1 - 0.152 8.117
1996/11/05 Oh No.2 2.551 - 2.223
1996/11/08 Oh No.3 9416 26.595 -
1996/11/11 Oh No.4 83.425 98.300 12.713

Effects on Accuracy of Trajectory Determination by Each Observation and Force Model

In order to confirm effects of both various force and observation models, we choose several
case studies (see Table 5). For the other models, for example, solar radiation pressure model, air
drag model and tidal effect comparing, please see Reference -4. From O-C and difference of

position and velocity of each case, we evaluate a degree of effects on trajectory determination by
each model.

Table 5§
SELECTED CASES FOR STUDYING EFFECTS OF VARIOUS MODELS

case No. “ a {b]c d l e
earth gravity model (B[A|A] A
center of mass correction ClOIx}1O010O
earth radiation pressure Q1010 X]0O
tropospheric reflection model QOO 10O ] X

A: JGM-3 B: GEM-T3 6: considered X: not considered
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CAll of the significant observation and force models are considered in the case a. In cases
from b to e, one of the models is omitted from modeling for trajectory determination. Since, the
case a should define the best O-C RMS value (provided that all the selected model is defined
accurately), exclusion of one of the selected models should result in a larger value for the O-C RMS
and a degree of its derivation of the O-C RMS from the case a may be used as a sensitive indicator
for determining the importance of the excluded model.

Table 6 shows O-C RMS and estimated parameters p, and I'}, of data arc No. 1 and arc No. 2
for eachcase. Table 7 and table 8 show the accuracy of trajectory determination and prediction

respectively.
Table 6
O-C RMS, ESTIMATED I'; AND p 4
ArcNo. CaseNo.  Stant (UTC) End (UTC) Pass Site Data O-CRMS(m) 1 T
1 a 1996/10/30 3h - 1996/11/02 12h 15 8 101 0.303 0.301 0.449
1 b 1996/10/30 3h - 1996/11/02 12h 15 8§ 101 2.090 0209 0.370
1 c 1996/10/30 3h - 1996/11/02 12h 15 8 101 0.439 0.304 0438
1 d 1996/10/30 3h -~ 1996/11/02 12h 15 8 101 0.304 0296 0.359
1 e 1996/10/30 3h - 1996/11/02 12h 15 8 101 1.845 0.287 0534
2 a 1996/11/02 3h - 1996/11/05 11h 10 7 61 0.210 0.298 0.408
2 b 1996/11/02 3h -~ 1996/11/05 11h 10 7 61 0.730 0.362 0431
2 c 1996/11/02 3h - 1996/11/05 1l1h 10 7 61 0.360 0.295 0.391
2 d 1996/11/02 3h - 1996/11/05 1th 10 7 61 0.209 0.293 0.314
2 e 1996/11/02 3h - 1996/11/05 11h 10 7 61 2.037 0.298 0421

Table 7
DIFFERENCES IN TRAJECTORY POSITION DURING THE OVERLAPPED PERIOD

Case No. Radial Along Track Cross Track RSS

a 0.130 0.446 0.275 0.540

b 0.939 2.152 0.672 2.442

c 0.117 0.654 0.121 0.675

d 0.223 0.495 0.095 . 0.551

e 0.370 1.846 0.375 1.920

Table 8
POSITION ERROR OF TRAJECTORY PREDICTION FOR THREE DAYS
Case No. Radial Along Track Cross Track RSS

a 0.937 2325 0.476 2.551
b -1.145 -38.503 -1.107 38.536
c 0.745 5.034 0.241 5.094
d 0.902 2.726 0.194 2.878
e

2.684 -14.868 0.171 15.109
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Figure 7 shows the difference in position between the trajectory derived being corrected the
center of mass and that not being corrected. According to the figure 7, the difference in the along
track is about 2 meters that is corresponding to the center of mass offset.
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Figure 7 Difference in position
( Center of mass carrected VS Center of mass not carrected)

Uncertainty for the earth radiation pressure model has only a minor impact to O-C RMS.
The acceleration by the earth radiation pressure model is so small that the effect may included in
the accuracy of trajectory determination by this ADEOS/RIS analysis system.

When all the models considered, O-C RMS is 0.5m to 2.5m, therefore, the position accuracy
may be 10 meters or better.

Comparison of Trajectory Determination Accuracy using SLR Data and using RARR Data

In this section, we discuss accuracy of determined and predicted trajectories using SLR data
or RARR data  The solution obtained by the RARR measurement with S-band radio wave were
provided to all the ADEOS users together with the ADEOS mission data during the ADEOS
operation period. Using the SLR data and the RARR data in table 9, we estimated the
ADEOS/RIS trajectory with the conditions showed in Appendix. Table 10 and table 11 illustrate
difference in position between those solutions. The difference grows at a alarming rate as each
arc passes, which implies that a larger error may propagate through the RARR method.
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Table 9 .
SELECTED SLR DATAARC AND RARR DATAARC

SLR RARR
Arc No.  Start(UTC) End(UTC)  ArcNo.  Start(UTC) End(UTC)
1S 1996/10/30 3h 1996/11/02 12h IR 1996/10/31 Oh 1996/11/02 18h
28 1996/11/02 3h 1996/11/05 11h 2R 1996/11/03 1h 1996/11/05 18h
3S 1996/11/05 8h 1996/11/08 21h 3R 1996/11/05 1h 1996/11/07 20h
48 1996/11/08 2h 1996/11/11 15h 4R 1996/11/08 2h 1996/11/10 1%h

Table 10
DIFFERENCE IN TRAJECTORYPOSITIONS
{ DERIVED FROM THE RARR VS DERIVED FROM SLR)

Time Span (UTC) Difference in Position (m)
Arc No. Start(UTC) End(UTC) Radial Along Track Cross Track RSS
1S vs IR 1996/10/31 Oh - 1996/11/03 Oh 6.166 22.259 12.274 26.156
2S vs 2R 1996/11/03 Oh - 1996/11/06 Oh 7.753 19.385 . 14346 25.332
38 vs 3R 1996/11/05 Oh - 1996/11/08 Oh 6.629 16.054 16.301 23.82
4S vs 4R 1996/11/08 Oh -~ 1996/11/11 Oh 5.647 28.679 21.716 36.413
Table 11

DIFFERENCE BETWEEN PREDICTED ORBIT AND REFERENCE ORBIT (m RMS)
Predicted orbit Predicted orbit Predicted orbit

Epoch(UTC) Reference orbit from 1R from 2R from 3R
1996/11/02 Oh 18 18.549 47.51 188.202
1996/11/05 Oh 28 156.699 16.78 18.446
1996/11/08 Oh 38 423,923 208.242 32.609
1996/11/11 Oh 48 822.053 640.769 150.481

POST-ADEOS MISSION

The NASDA plans to launch the ADEOS-II, which succeeds the ADECS, in the summer of
1999. The ADEOS-II will also carry Laser Reflector which has 9 individual cube-corners
arranged to provide a quasi-hemispherical array on the pole nadir orientation. A center cube-
corner will be oriented toward the nadir normal, and the 8 remaining cube corners will be
positioned radially. This configuration will enable us to make an SLR observation in nearly all
visible ranges (except a2 shade part of bus equipment).  Its visible ranges is expected to be larger
than that of the ADEOS.

Table 12 shows the NASDA spacecrafts that are planning to be launched with carrying

Laser Reflector in future.
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Table 12
NASDA’'S SPACECRAFT CARRYING LASER REFLECTOR

S/IC NAME Launch year Orbit type Altuitude (km)  Onboard LR type

ADEOS 1996, SUMMER LEO 800 horrow
ADEOS-II 2000 LEO 800 prism array
ETS-vil 2002 GEO 36500 TBD

ALOS 2003 LEO 700 prism array

LEQO : Low Earth orbit
GEO : Geostationary Orbit

We provide an estimate of accuracy for trajectory determination and prediction during the
low solar activity period.

Accuracy of predicting a trajectory is less than 30 meters and the accuracy is valid for a
period of three days after the calculation. = Although the accuracy changes quite randomly from 3
to 30 meters, we achieve our main purpose that accuracy of trajectory prediction must be under
100 m for the defined period. For tracking the RIS for its original scientific experiment, our
derived TIRVSs are sufficient for a successful run.

For accuracy of trajectory determination, we achieve accuracy of about 3 meters in the along
track. Uncertainty for a trajectory position of low earth orbiter results mainly from an
uncertainty in the along track direction. Therefore, the accuracy of 3 meters in along track
direction provides a good measure for the overall accuracy in position. Since accuracy of
trajectory determination prior to this experiment was about 150 meters, the accuracy for the
ADEOS is improved significantly.

However, approximately from the year of 1999, the solar activities will become more
significant.  Then it will become difficult to satisfy the requirement for accuracy of trajectory
prediction since an effect of air drag onto trajectory determination is poorly understood.
Unfortunately, we have no means to verify the above assumption for accuracy of trajectory
determination and prediction owing to ADECS opefation termination. It would be necessary to
ﬂetermine and predict the trajectory more frequently. '
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APPENDIX SOFTWARE MODELS

SOFTWARE MODEL ADEOS operation by NOCS/NOCS2 ADEOS/RIS experiment by proto-type GUTS
ASTRONOMICAL CONSTANTS
Speed of Light 2.99792458 X108 m/s 299792458 X 10® m/s
Astronomical unit 1.4959787 X108 km 1.4959787066 X 108 km *
Equatorial radius of the Earth 6378.138 km (GEM-10B) 6378.137 km(WGS-84) *
Flattening of the Earth 1/298.257 (GEM-10B) 1/298.257(GEM-10B)
Mean spin rate of Earth 7.292115 X107° rad/s 7292115 X 1075 rad/s
TIME SYSTEMS
Inner TAL TAI
Input/Output uTC UTC
UT1 - TAI from IERS Bulletin B from IERS Bulletin B
COORDINATE SYSTEMS
Inertial Mean equator and equinox of J2000.0 Mean equator and equinox of J2000.0
Input/Output True equator and equinox of date True equator and equinox of date, )
Tuned Interange Vector (TIRV) *
Precession Newcomb theory Newcomb theory
Nutation developed by Woolard (JPL-DE200 used ) developed by Woolard (JPL-DE200 used)
Polar motion from IERS Bulletin B from IERS Bulletin B
Geodetic coordinate system WGS-84, C-7 WGS-84, C-7
FORCE MODELS
Geopotential .
Geopotential model GEM-10B to degree and order 36
GEM-T3 to degree and order 50 GEM-T3 to degreeand order 50
IGM-3 ( C,,, S,, rate and J, rate is not included)*
GM: 398600.44 km?/s? (GEM-10B) GM: 398600.436 km3/s? *
Tidal effect only solid Earth tide by sun and moon (not IERS) |only solid Earth tide by sun and moon (not IERS)
luni-Solar gravity

luni-Solar ephemeris

Moon-Earth mass ratio:

Sun-Earth mass ratio:
Atmospheric drag

Atmospheric density model

Radiation pressure
Solar Radiation

Earth Ratiation
Reflection model

JPL-DE200
0.01230002
3.329460 X105

Jacchia-Nicolet (geomagnetism not considered),
Jacchia-Roberts,

Modified Harris-Priester,

MSIS86

Solar constant =4.57 X 10~ N/m? at 1AU
Cylindorical model for Earth and Moon shadow
N/A

single plate for Solar, Earth radiation and
atmospheric drag

JPL-DE200
0.012300034(DE200) .
3.32946045 X 10° (DE200) *

Jacchia-Nicolet (geomagnetismnot considered)

Solarconstant =4.560 X 10-¢ N/m2at 1AU *
Cylindorical model for Earth and Moon shadow
Second degreezonal model ®
singleplate for Solar, Earth radiation and
atmospheric drag
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SOFTWARE MODEL ADEOS operation by NOCS/NOCS2 ADEOS/RIS experiment by proto-type GUTS
MEASUREMENT MODELS
Range In use( Lighttime equation is solved by In use ( Light time equation is solved by
instantaneous rangedifference method) instantaneous range difference method)
Range rate In use none
Antenna angles (AZ,EL) In use none
X,Y) In use none
I-way Doppler In use none
Data correction )
Tropospheric refraction GTDS' Algorithms Marini and Murray model
lonospheric refraction Tsuchiya Model N/A
Center of mass N/A Considered
Site displacement N/A only Solid Earth tide by Sun and Moon
NUMERICAL INTEGRATION
Method Adams-Cowell method Adams-Cowell method
predictor- corrector first order: Adams-Bashforth predictor first order; Adams-Bashforth predictor
Adams-Moulton corrector Adams-Moulton corrector
second order: Stormer predictor second order: Stormer predictor
Cowell comrector Cowell corrector

ESTIMATION METHOD

Basic method Weighted least squares estimation Weighted least squares estimation
Iterative procedure Iteration of cholesky method equations Iteration of cholesky method equations
ESTIMATION PARAMETERS
Orbital elements Cartesian Cartesian
Keplerian Keplerian
Force model Parameters Scale factor of amospheric drag o ; Scale factor of amospheric drag p ;
Scale factor of solar radiation I"; Scale factor of solar radiation T',
- Observation biases Range bias and so on Range bias and so on
Station Location biases (Xb, Yb, Zb) (Xb, Yb, Zb)

+$GTDS : Goddard Trajectory Determination System
* Difference between the ADEOS operation system and the ADEOS/RIS experiment system
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NEXT DAY PRECISE ORBITS FOR TOPEX/POSEIDON
USING DORIS

Jean-Paul Berthiast, Sabine Houry#

Until now, TOPEX/Poseidon precise orbits were needed only for the
production of Geophysical Data Record files, and thus were not required
untii about 5 weeks after data acquisition. Recent developments in
operational oceanography now require the rapid delivery of precise
altimeter data within days, and possibly hours, of data acquisition. The
processing of the altimeter measurements can be accomplished according
to this schedule, and the only difficulty rests with the production of the
precise orbit ephemerides.

The long delay involved in the current production scheme results from the
necessity to collect lasér tracking data from ground stations and also from
the need to wait for the final and most accurate values of the solar activity
and Earth orientation parameters. A reduction in the orbit production delay
forces the processing to deal with DORIS data only and with predicted
values for the parameters. In addition, this reduces the amount of validation
that can be performed before delivery.

Fortunately, the spatial and temporal coverage of the DORIS tracking
system is such that the DORIS data by itself is sufficient to produce a
precise orbit. Also, predictions of solar activity and Earth orientation
parameters have improved considerably over the last few years, so that
using them instead of actual data does not significantly degrade the orbit
accuracy.

Using this strategy, DORIS orbits have been computed on a daily basis
within 24 to 48 hours of data acquisition. And since the beginning of
October 1997, these orbits have been included on the Poseidon Interim
Geophysical Data Record files for all cycles when this altimeter is on.
Evaluations of these daily orbits reveal that their radial accuracy is very
close to that of the standard precise orbits ephemerides.

INTRODUCTION

The DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite)
tracking system was designed and developed by the Centre National d’Etudes Spatiales
(CNES), in collaboration with the Institut Géographique National (IGN) and the Groupe de
Recherches en Géodésie Spatiale (GRGS), to achieve the very high level of orbit

i Manager, Orbit Metrology Group, Centre National d’Etudes Spatiales, 18 avenue E. Belin, 31401 Toulouse Cedex 4, France
* Member of the technical staff, Orbit Metrology Group, Centre National d’Etudes Spatiales, 18 avenue E. Belin, 31401 Toulouse
Cedex 4, France
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determination accuracy required by the joint NASA-CNES altimeter mission
TOPEX/Poseidon (T/P).

The two T/P altimeters measure the distance between the spacecraft and the ocean
surface with a precision of about 2 cm !. In order to derive the absolute sea surface height
from these observations, the altitude of the spacecraft has to be known with the same level
of precision. To reach this goal a major effort was launched as part of the T/P Precise Orbit
Determination (POD) activities. It included, among others things, 1mprovements to
geopotential models?, the development of sophlstwated surface force models®, and the
installation of the DORIS tracking system*>

These efforts have resulted in an orbit precision never achieved before for a large
satellite in low Earth orbit. The error level of the T/P Precise Orbit Ephemerides (POE) that
.are routinely produced by NASA and CNES does not exceed 2 to 3 cm RMS in the radial
direction as demonstrated by various tests: tracking data residual analysis, especially high
elevation laser ranging residuals, comparisons of orbits computed with different data sets

(in particular DORIS and laser versus GPS), and altimeter crossover residual z:malys1s6 789

DORIS is a one-way, ascending Doppler system which utilizes a set of ground
beacons that broadcast continuously and omnidirectionally on two frequencies of 2036.25
and 401.25 MHz. Each beacon contains an ultrastable quartz oscillator (USO), as well as
sensors for monitoring the temperature, pressure and humidity. The broadcast message,
which is transmitted every 10 seconds, consists of the meteorological data, the beacon
identification number, a short status report and a synchronization signal. The receiver on-
board the satellite receives the dual frequency signal and computes the integrated Doppler
count over intervals of 7 or 10 seconds. The receiver is programmed in advance to
multiplex the signals from several commonly viewed beacons.

The current DORIS network consists of about 50 beacons covering the entire surface
of the Earth, with the exception of the Southern Pacific ocean. It is routinely used to track
three satellites, SPOT 2 (since 1990), T/P (since 1992) and the recently launched SPOT 4,
and produces more than 250 passes of data per satellite and per day. With this network, the
DORIS system provides on a daily basis a uniquely spatially and temporally dense set of
high precision ground-based tracking data.

DORIS is a centralized tracking system, in which all the data are collected on-board of
the spacecraft. This makes it possible to compute the orbit either on-board in real-time, or
on the ground in near real-time. The real-time capability is now operational on SPOT 4,
while the near real-time processing is routinely used to compute daily 1-day orbits for T/P.
The key accomplishment was to improve the precision of these orbits to a level comparable
to that of the POE.

RATIONALE FOR FAST PRECISE ORBIT PRODUCTION

Until now, precise orbits were only needed for the production of Geophysical Data
Record (GDR) files, which are designed for the scientific community, and are distributed
with a two month delay. Thus POEs were not required until about 5 weeks after data
acquisition. The Interim GDR (IGDR) files, which were provided to users requesting fast
service, were generated using lower precision operational orbits.
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Recently, there has been a lot of interest in operational oceanography, which involves
the processing of altimeter data within days, and even hours, of data acquisition. And for
some applications, the availability of accurate products is crucial to the quality of the result.

The French MERCATOR project'?, which is supported in part by CNES, is a leading
project in this field. Its goal is the implementation within five to seven years of a pre-
operational high resolution global ocean model which assimilates satellite and in situ data.
One of the by-products should be the demonstration of the operational need for space based
oceanography data, with real-time availability as one of the key factors.

Looking to the future, near real-time altimeter data should become one key component
of the global ocean observation system. Quick assimilation of this data into global
meteorological models could improve weather forecast, both on a short term and seasonal

basis (e.g. El Nifio). It could also help predictions of near-surface conditions for the open

ocean, which would in turn benefit fishing or transportion industries while improving
safety. Even local forecast of coastal currents would be improved through a better
knowledge of the deep ocean boundary conditions.

CHALLENGES OF FAST PRECISE ORBIT PRODUCTION

These new requirements for fast precise orbit production creates new challenges. The
long delay involved in the current production scheme makes it possible to collect laser
ranging data from ground stations, and also to benefit from the final and most accurate
values for the solar activity and Earth orientation parameters. A reduction in this delay
forces the precise orbit production system to deal with DORIS data only and with predicted
values for the parameters. In addition, this reduces the amount of validation which can be
performed before delivery.

Fortunately, when available, the DORIS data by itself is sufficient to produce precise
orbits. In addition, atmospheric drag is very small at the altitude of T/P, and short term
predictions of solar fluxes and geomagnetic indices have improved considerably over the
last few years, so that using them instead of actual data does not significantly degrade the
orbit accuracy.

Similarly, the quality of predictions for Earth orientation parameters has also
improved, but it is still not sufficient’ at the level of accuracy that we deal with. However,
the DORIS data is powerful enough to accurately determine the orbit in the Earth based
frame in which the station locations are known, even though it is not known how to
precisely relate this frame to the inertial frame in which the equations of motion are
integrated.

There are two elements that contribute to this success. The first one has to do with the
ability to recover the Earth orientation parameters while computing the orbit. However, the
quality of the result is not sufficient to ensure centimeter level accuracy. The second one is
the fact that when the T/P orbit and the DORIS station coordinates are expressed in the

t The factor of two improvement in the quality of the IERS Bulletin A short term predictions'’, introduced in
early March, might change this conclusion. It is currently under investigation. This change was implemented
to improve the quality of GPS orbit predictions.
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same frame, the only way that the Earth orientation parameters play a role is through the
non-inertial nature of the frame. This then translates into two effects, one which has to do
with dynamics, and involves the appearance of fictitious forces, the other one which
appears in the computation of the propagation time of signals between the beacon and the
spacecraft. Both of these effects are small, and therefore the error induced by the use of
approximate Earth orientation parameters is of second order. But, in addition, the reduced
dynamics stochastic correction technique'? (ELFE) used in the CNES precise orbit
production strategy corrects the dynamical errors using measurements.

‘ORBIT PRODUCTION STRATEGY
Description

The near real-time precise orbits are produced at CNES using the tools that were
developed for the POE. The ZOOM software is used for all the computations, and the
Voyager user interface and procedures are used to activate and monitor the various steps of
the processing’ !,

A short summary of the strategy is as follows:

e Perform a standard orbit determination using a complete dynamical model. Corrections
to the IERS predictions for polar motion parameters are added to the standard state
vector (initial conditions, multiplicative coefficients for solar radiation pressure and
atmospheric drag, frequency and troposphere bias per pass, constant along-track and
once-per-revolution along-track and cross-track empirical forces). The result is a fully
dynamical orbit ephemeris expressed in the true-of-date reference frame.

e Apply the reduced dynamics stochastic correction technique to adjust a piecewise
constant empirical force that follows a first order Markovian evolution scheme. The
~ result is a corrected orbit ephemeris, still expressed in the true-of-date reference frame.

e Convert both dynamical and corrected ephemeris to the IERS Terrestrial Reference
Frame (ITRF) using the estimated value of the Earth orientation parameters. It is only in
this frame that the orbit is accurate, so these are the products which are delivered and
archived. '

e Validate the orbit using data residual analysis, comparison of two successive orbits in
the overlapping region, and comparison with the previous day’s extrapolated orbit.

Other verifications, including comparisons with respect to the POE and altimeter
crossover residual statistics, are conducted routinely, as soon as these products become
available.

Products

T/P DORIS data is received at CNES in daily batches in the morning. On day D the
orbit is actually computed using data from days D-2 and D-1, and covers 30 hours. This
includes a two hour margin at both ends, where the stochastic correction degrades the orbit
rather than improving it: this is due to the lack of past information on the correlated
stochastic process at the beginning, and to the lack of future information at the end. This
leaves 26 hours of usable ephemeris, covering the period from 8 p.m. on day D-2 to 10 p.m.
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on day D-1. The first two hours, 8 to 10 p.m. on day D-2, are a repeat of the previous day’s
orbit and are used for validate using overlap statistics.

In the operational process, the orbit which is delivered on day D actually covers days
D-2 through D. This is the result of the merging of the precise orbits computed following
the above procedure on days D-1 and D, as well as 2 hours coming from the purely
dynamical solution of day D, from 10 p.m. to midnight, and 24 hours of extrapolation.

These composite orbits are delivered to the Centre de Traitements DORIS/Poseidon
(CTDP) which reformats them before providing them to AVISO. They are then added to
the fast IGDR products and sent to the Service Hydrographique et Océanographique de la
Marine, and to its US counterpart, NAVOCEANO. During the periods when the Poseidon
altimeter is on, these orbits are also used to produce the standard IGDR.

-Operations

The processing chains are activated automatically on a daily basis by Unix cron
processes. The activation takes place at the same time every day; however, there are
sometimes delays in the reception of the DORIS data from NASA’s Jet Propulsion
Laboratory, or in the preprocessing performed by the CTDP. In this case, the procedure
switches to a sleep state and checks for data arrival at regular intervals. Once the data are
available the entire processing takes less than one hour on the SUN Ultrasparc Enterprise
ES000 of the CNES central computing facilities.

At the end of the processing an E-mail message is sent to the supervising engineer. It
contains the status of the individual steps, as well as the results of the various verification
tests. Simplified global status messages are available for display on the terminal of an
operator. However, during the current development phase, no operator is available to
monitor the orbit determination processes during weekends. As a temporary solution, a
copy of the final mail message is sent to the private mailbox of one of us (S.H.) who can
thus remotely monitor the status of the system, and take appropriate action.

Many of the internal validation tests are associated with expected ranges for results.
Whenever values are out of range, processing is stopped. This prevents delivery of
incorrect orbits to the end user. Using the Voyager monitor, the supervising engineer can
intervene manually in the system, and resume the processing at any point. He can skip
steps, override options, and perform step by step processing, or chained operations.

Many parameters are -generated during the daily processing. They are archived for
long term monitoring of the orbit quality. In the near future, an automated quality
assessment report will be generated based on these parameters and provided to users along
with the orbits.

ACCURACY ASSESSMENT

Near real-time DORIS orbits have been computed over the last few months, using
various configurations. Hence, results vary slightly as a function of the configuration used
at the time. However, this has no significant impact on the analysis which is presented here.
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RMS RESIDUALS (mm/s)
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Figure 1 DORIS residuals RMS value

The statistical analysis of the data residual is a good tool to evaluate the quality of the
.processing. In the case of DORIS, the data appear noise limited around the level of
0.55 mm/s. RMS values of the DORIS data residuals are plotted on Figure 1. Daily solution
residuals (squares) are at least as good, if not better, than residuals of the POE (triangles).
In particular, daily residuals are lower during fixed yaw periods, when cross-track and
along-track directions remain constant relative to the satellite body. In this case, the
adjusted once-per-revolution parameters absorb poorly modeled surface forces more easily.

Successive orbits overlap over a 2-hour period. Comparison of the two solutions over
this period provides a good estimate of the orbit error. RMS values of these differences are
plotted on Figure 2.
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Figure 2 Orbit overlap differences RMS values
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In the radial direction (top curve) differences rarely exceed 4 cm. Their mean value is
below 2 cm. The large overlap differences in the cross-track direction, and to a lesser extent
in the along-track direction, are a consequence of the daily changes in the solved-for polar
motion parameters. The quality of the corrections to the polar motion parameters computed
during the orbit production process can be estimated a posteriori when IERS final solutions
become available about 4 weeks later. The RMS of the differences over a few months are
2.6 and 2.2 milliarcseconds for the u and v components, which correspond respectively to
7.8 cm and 6.6 cm. These values are consistent with the observed level of cross-track and
along-track error.
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Figure 3 RMS differences between daily orbits and the POE

RMS values of the radial differences between daily orbits and the corresponding POE
are also about 2 cm (Figure 3). This is comparable to the radial error level in the POE itself,
thus, in the radial direction, daily orbits appear to be about as accurate as the POE. Cross-
track and along-track differences are significantly larger, respectively about 10 cm and
7 cm RMS. Here again, these differences are mostly the result of inaccuracies in the Earth
orientation parameters.

The larger differences observed since December 1997 are due to a change in the
reference system used to generate the near real-time orbits. Originally, these orbits and the
POE used the same reference system, based on a set of station coordinates computed at
CNES. In December of last year, the reference system of the daily orbits was switched to
the ITTRF 96 solution'®. The almost 5 cm offset along the Z direction between the two
frames adds to the difference between the orbits in the radial and along-track directions.

157



-~ 70

] j i

& 68 ; ]

S e W ,

{3 6.6 N . % s w " ,......... = - o L] . .

x 64 A A b . -

2 &2 — 2%y 8wl A A -

@ 60 . ‘..‘ » - -

g s A .

N 586

E 54 "
170 175 180  CYCLENUMBER 190 195 200

Figure 4 Altimeter crossover residual RMS value

The computation of altimeter crossover residuals provides the best external test of the
-quality of the orbits as this data is not used to compute the orbit. Figure 4 presents the result
of these evaluations. Crossover residuals computed using a combination of 10 daily orbits
to produce a full repeat cycle are represented by squares, while crossover results for the
POE are represented by triangles. Full cycle crossover residuals for daily orbits and precise
orbits are roughly the same. This confirms that the radial orbit error level in the daily orbits
and in the POE are nearly identical. However, this test does not provide any reliable
estimate of the error level, as the residual signal is dominated by ocean variability, altimeter -
data noise and tide model errors.

PERSPECTIVES FOR REAL-TIME PRECISE ORBIT DETERMINATION

In 1991, CNES started the development of a DORIS based space bome orbit
determination system for the SPOT 4 satellite'S. The core of the system is a standard
DORIS receiver to which a new function has been added to process measurements in real-
time and produce an orbit. Positions and velocities are then added to the image data in the
spacecraft telemetry and downloaded to the ground image processing centers.

This on-board orbit determination system, DIODE (Détermination Immédiate
d’Orbite par DORIS Embarqué), is now fully operational. Figure 5 shows a comparison of
the SPOT 4 positions computed on-board and received in the telemetry with a ground based
reference orbit. This plot corresponds to the first week of operations.

The current results of DIODE are an excellent proof of its quality and reliability. The
accuracy of the results, a few meters 3D at 1 sigma, is well within the requirements of most
space missions, including SPOT.

However, technically, this version of the orbit determination software is obsolete in
terms of precision. It was delivered to the project in mid 1995, and since then major
improvements have been brought to the software to support the development of the new
DORIS receivers. These instruments will offer an order of magnitude improvement in
precision over the current version'”®. Work is on-going to try to retrofit the SPOT 4
software to benefit from this improvement in accuracy, as well as other new functions such
as the ability to initialize autonomously.
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DIODE/SPOT4 First three days on orbit
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Figure 5 First comparisons of the on-board orbit
with a ground-based reference

One key factor for this progress is the fact that both the real-time on-board orbit
determination software and the operational full precision ground-based orbit determination
program, ZOOM, are developed within the same group. Thus, challenges arising from the
requirements of operational oceanography have stimulated the development of new and
more precise real-time processing strategies.

The latest version of DIODE was designed for the European ENVISAT satellite.
‘When adapted to take into account the rather complex attitude control of the T/P spacecraft,
it provides orbits with a radial error level of between 10 and 20 cm RMS. This is not
sufficient for the very precise operational applications, but can be used to produce auxiliary
wind and wave products.

However, improved modeling techmques and a better tuning of the filter have led to
significantly better results in some test cases’. These results still need to be confirmed. If
they can be generalized, there is hope that, in the future, real-time precise orbits can be
produced.

CONCLUSION

Evaluations of near real-time daily orbits computed for T/P using DORIS data reveal
that their radial accuracy is roughly identical to that of the POE. Their introduction into the
fast IGDR products, and into the Poseidon IGDR, hence their availability to the
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oceanographic community, should contribute significantly to the development of
operational altimeter data processing.

Jason, the follow on to the T/P mission, will support operational oceanography by
providing users with IGDRs based on the near real-time DORIS orbits, and with an even
faster delivery product, the Operational Science Data Record (OSDR) based on the real-
time on-board orbits. It is hoped that these new developments will help secure the future of
operational oceanography, so that we can all benefit from its extraordinary potential
contribution to weather and marine state forecasting. '
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The Earth observation satellite Envisat-1 will be controlled by the European Space
Operations Centre (ESOC). This paper addresses ESOC's orbit determination
activities for Envisat, and more particularly the possibility of obtaining high-
precision altimetry products for near-real-time ocean surface topography
monitoring.

First, this paper presents the current ESOC capabilities in the area of Precise Orbit
Determination (POD) and ocean surface model computation, based on the most
recent ERS-2 data. A detailed analysis of the models used for ERS and the
possibilities of implementing newly developed ones is discussed in order to identify
potential improvements. Since the precise tracking devices on board Envisat
provide further sources of improvement compared to ERS, this paper also presents
the advantages which may be expected from Envisat for obtaining better orbits and
models. ’

Finally, the new Navigation Package for Earth Observation Satellites (Napeos),
which ‘will perform both the operational and precise orbit determination, will be
described in a few words

INTRODUCTION

Continuing its Earth observation programme, ESA will launch Envisat-1 in November 1999. Envisat, with
its improved instruments and tracking devices, will still resemble in many aspects the remote sensing
satellites currently in operation. The satellite will be controlled by ESOC, which will also be responsible for
all Flight Dynamics activities. These activities include routine operational orbit determination, orbit
prediction and orbit maintenance (manoeuvre planning) but also very precise orbit determination resulting in
the available of high-precision altimetry products.

The aim of ESOC Flight Dynamics is not to produce scientific data. Rather, its requirements on orbit
determination, prediction and control stem from the need to control the spacecraft and its instruments, and to
maintain the ground track of the satellite within a narrow deadband. In addition to these near-real time
activities, precise orbit determination (POD) is performed for the evaluation of the routine orbit
determination and the performance of the altimeter instrument. POD is aided by the presence of the laser
retro-reflector (LRR) and, as a new instrument compared to ERS, the DORIS system (Doppler Orbitography
and Radiolocation Integrated by Satellite). These tracking systems shall provide the possibility of obtaining
an accuracy of around 5 c¢m in the radial direction. The altimeter height measurements, when properly
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processed, also provide a source of tracking data, and the ocean surface topography models obtained in this
processing are a valuable spin-off of the Envisat POD.

As the result of several years of experience with the POD of ERS and Topex/Poseidon, the Envisat mission
can build on the knowledge of very accurate models and processing techniques. Of special interest is the
processing of altimeter data, while the nearly complete coverage by precise DORIS tracking will allow the
computation of more accurate orbits in zones of major interest like the Pacific ocean, where no simultaneous
altimetry and precise tracking data were available for ERS. Unfortunately, at the same time Envisat will
suffer the consequences of flying during the solar maximum, which will make air drag modelling much more
challenging.

ESOC's current capabilities in the area of POD and ocean surface model computation will first be evaluated
using the most recent ERS-2 data. Subsequently, the accuracy which may be expected from Envisat will be
explored, with a view to establishing the accuracy of the altimetry by-products of the ESOC Envisat POD.

CURRENTLY IMPLEMENTED MODELS FOR ERS

Two parallel activities will exist in the Envisat orbit support: operational and high-precision orbit
determination.

The operational orbit determination is based on requirements of near-real time orbit determination with
maximum stability and reliability and relatively modest accuracy. The dynamic models and tracking data
processing models currently used for ERS yield the required accuracy specified for orbit determination and
prediction, both for ERS and Envisat, even in the period of increased solar activity. This orbit determination
scenario is not subject to dramatic improvements, mainly due to the accuracy limitations of the S-band
tracking system itself. This activity includes the estimation of optimised manoeuvre sequences in order to
maintain the ground track within one km from the reference ground track throughout the mission.

Precise orbit determination follows a completely different approach. The most accurate models available are
used in order to obtain orbits as accurate as possible. The tracking data used for this purpose are also the
most accurate available (satellite laser ranging (SLR) and Precise Range and Range-rate Equipment
(PRARE)) with state of the art data processing models. This scenario is subject to continuous improvement,
both in the environmental modelling and in the processing of the tracking data. Of particular interest is the
analysis and implementation of models for the correction of altimeter observations.

Although the main objective of the ESOC POD is the processing of ERS data and the generation of ERS
high-precision orbits, data from other satellites equipped with different tracking devices are processed. This
allows the verification of algorithms and models which may be used for ERS and the generation of auxiliary
data (e.g. station coordinate solutions) for which the ERS orbit configuration is not optimal.

Dynamics and tracking data processing models

The following setup, currently used for POD of ERS, Topex/Poseidon, SPOT and Lageos also forms the
basis for the processing of other (future) satellite and tracking configurations:

Reference frame
¢ Mean equator and equinox of J2000.0
« Nutation (Wahr model)
o Earth rotation (EOP IERS Bulletin A)
» SLR station coordinates from an ERS and Lageos multiarc solution aligned to the ITRF
« DORIS station coordinates from ITRF
Dynamics
+ JGM-3 (70,70) gravity model
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» MSISE-90 air density model. Detailed drag modelling based on spacecraft geometry and
aerodynamic flow; scale factor estimated every twelve hours.
Luni-solar gravity
Frequency-dependent solid Earth tides (Wahr model)
Ocean tides (Schwiderski)
Direct solar radiation pressure model. Detailed modelling based on spacecraft geometry
. Albedo and infrared radiation perturbations
Manoeuvre modelling with scale factor estimation
One cycle per revolution (cpr) along-track and cross-track empirical acceleration. One set of
coefficients per arc.
Tracking data processing
s Murray- Marini tropospheric correction (laser)
» Centre of mass correction
» Tropospheric, ionospheric and centre of mass corrections from dataset for DORIS
» Tropospheric, ionospheric, centre of mass, antenna phase, station mechanical and external
corrections for the Precise Range and Range-rate Equipment (PRARE) tracking data.
SLR range station bias
« PRARE range station bias and pass atmospheric scale factor

@ L L @ [ ] @ L )

°

Altimeter data processing

Ocean surface:
¢ Solid Earth tide correction, Schwiderski model
Permanent tide correction, Wahr model
Ocean tide correction, Schwiderski NSWC model
Ocean loading, Schwiderski model
Mean Sea Surface, OSU-91A plus ERS-1/ESOC correction model
Dynamic Sea Surface Topography, ERS/ESOC model
Propagation:
« Dry ropospheric comection, Saastamoinen 1972 and ECMWF pressure field
+ Wet tropospheric correction, ESOC model
» TIonospheric correction, Rawer-Bent model

¢ ° o o @

+ Electromagnetic bias correction from Fast-Delivery products

o Centre of mass

» Alumeter instrument bias
Some of the models used in the processing of altimetry were developed in-house (ERS-2 Altimeter
Calibration at ESOC, Romay-Merino et al.); the altimeter data generated in the geodetic phase of ERS-1
gave the possibility of generating a global solution for the mean sea surface with resolution of 0.3 degrees
and accuracy better than 10 cm. A spherical harmonic expansion for the altimetry wet tropospheric
correction was also computed based on meteorological data from the ECMWE.

Precise Orbit Determination implementation

Satellite laser ranging observations and altimeter normal points are the tracking data types used in the ERS-
2 POD. A parallel POD activity for evaluation purposes uses PRARE as precise tracking data. Both orbit
determination activities use five-day arcs overlapping the previous and following arcs by one day each (two-
day effective overlap). The three days in the middle of each arc are kept as the precise solution (see Figure
1). With this strategy one can eliminate boundary effects from ill-determined parameters like aerodynamic
coefficients. Comparisons of the one-day arcs centred in each of the two-day overlap periods are made in
order to verify internal consistency between successive arcs.
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Figure 1: Precise Orbit Determination Strategy

ERS-2 precise orbit determination results

Since the launch of ERS-1 in 1991, and subsequently for ERS-2, the ESOC precise orbit determination has
seen a gradual improvement in the dynamics and data processing models with a corresponding improvement
in the accuracy of the orbit solutions for these satellites. A major step was achieved at the occasion of the
relative calibration of the ERS-1 and ERS-2 altimeter instruments during the ERS-2 commissioning phase
(ERS-2 Altimeter Calibration at ESOC, Romay-Merino et al.).

The first step in the generation of precise altimetry products is the generation of a high-precision orbit
solution. This is accomplished by the simultaneous processing of SLR quick-look data from the EUROLAS
and CDDIS data servers and altimetry. The SLR station coordinates used for ERS are based on multi-arc
solutions incorporating ERS and Lageos data, where the scale and orientation of these solutions have been
made to match the current ITRF solution. The latest solution is based on two years of Lageos and ERS data
and coincides in scale and orientation with ITRF-96.

Unfortunately, the ERS-1 PRARE tracking device failed soon after its activation. For ERS-2, the processing
of PRARE data has received a lot of attention from the international POD community, and after two years
solutions with an accuracy comparable to those based on satellite laser ranging (SLR) and altimetry, but
independent of the altimeter data, have become possible (cf. e.g. Incorporation of PRARE data in ERS-2
orbit computation, Visser et al.).

Typical one-way rms values of ERS-2 SLR residuals are shown in Figure 2. They are an indication of the
total satellite position accuracy during the periods of visibility by a laser station.
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Figure 2: ERS-2 POD SLR Residuals
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The altimetry residuals, of which rms statistics are shown in Figure 3, are an indication of the combined
radial accuracy of the orbits and the models used in the processing of the aitimeter data.
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Figure 3: ERS-2 POD Altimetry Residuals

Another indication of the orbit accuracy is the consistency between consecutive orbit determinations. The
rms difference in the overlapping arcs give an idea of the consistency of the solutions. For the SLR/altimetry
combination these values are below 5 cm.

Orbits based on (revision five) PRARE data are yielding fits of the tracking data of about 7 cm RMS in
range (one-way) and 0.8 mm/s RMS in range-rate (see Figure 4).
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Figure 4: ERS-2 POD PRARE Residuals

ERS-2 altimeter products from PRARE/SLR orbits are being generated at ESOC and shown at its Internet
web site (http://nng.esoc.esa.de/). A similar future activity will be based on DORIS/SLR orbits
for Envisat. The extension of the PRARE MEX station network at the beginning of this year improved the
accuracy and consistency of orbits independent from altimetry. The radial internal consistency goes from 5.7
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cm for the SLR solution to 1.9 cm for the PRARE/SLR combination. The combination SLR/altimetry stays
in between with 3.3 cm (see Figure 5). The problem related with the SLR solution is due to the lack of data
in the first part of the analysed period, which is typical for SLR in seasons of bad weather in the northemn
hemisphere.
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Figixre 5: ERS-2 Orbit Radial Internal Consistency for Various Tracking Scenarios

The radial orbit comparison between the altimetry/SLR and PRARE/SLR solutions has an rms of 3.0 cm.
Given that the maximum accuracy that can be obtained with the JGM3 model has been estimated to lie
around 8 cm, the accuracy of the PRARE/SLR solution should be sufficient for obtaining altimeter products.
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Figure 6: ERS-2 Radial Orbit Comparison: Altimetry/SLR vs. PRARE/SLR

ENVISAT ORBIT DETERMINATION

ESOC Flight Dynamics is now preparing for the support of the Envisat mission. The similarities between the
two spacecraft and their orbits make it possible to reuse most of the existing ERS systems for Envisat. It is
important, however, also to identify the differences between the two missions in order to make the
appropriate adjustments in order to maintain the existing performance and improve it where possible.
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The Envisat Tracking Devices

Four tracking devices are available on Envisat for the purpose of operational and precise orbit

determination. These are:

® S-band transponder: This system provides 2-way range and range difference data from ESA's Multi-
Purpose Tracking System (MPTS). This is the main source for the operational orbit determination. Its
relative low accuracy (of the order of 1 meter after pre-processing) makes it unsuitable for POD.

o Laser Retro-Reflector: This is a passive device which provides a capability for high-precision 2-way
ranging from the SLR network. The coverage of this network is limited to populated areas of the Earth
(Europe, North America, etc.) and it is very sensitive to meteorological conditions.

o Doppler Orbitography and Radiolocation Integrated by Satellite (DORIS): This system replaces the
PRARE system used on ERS. DORIS provides high precision one-way range rate observations from a
very uniformly distributed network with a nearly global coverage. The device mounted on-board Envisat
incorporates the second generation of the DORIS tracking system.

e Radar altimeter: Although not a tracking device in the first place, it provides height measurements above
the instantaneous sea surface, which can be used to improve the operational orbit determination.

The main advantage of Envisat with respect to ERS is the global tracking data coverage provided by
DORIS. Also the DORIS station co-ordinates are computed as part of the ITRF from Spot and
Topex/Poseidon solutions.

Precise Orbit Determination Prospect

To demonstrate the accuracy achievable in Envisat POD it is necessary to simulate a scenario with a similar
satellite, orbit and tracking data. This is most easily achieved by using an existing mission whose
characteristics are close to those of Envisat. Missions carrying a DORIS instrument are SPOT and
Topex/Poseidon. Although Topex/Poseidon is more attractive because it also carries two radar altimeters
and a laser retro-reflector, the SPOT orbital height is much closer to that of Envisat, and this will be the
deciding factor in the achievable orbit determination accuracy. For the analysis, six arbitrarily selected
months of SPOT-2 DORIS data were selected. The models used in the analysis are basically those from
ERS except for the variable area table for drag and radiation pressure. The station coordinates set was taken
directly from the ITRF94.

The potential accuracy of the orbits is to certain extent represented by the level of residuals in the orbit fits.
For the analysed data a value of 0.56 mm/s was computed, which is equivalent with a noise in 20-second
one way range normal points of 2 cm. This means that the achievable accuracy is of the same order of an
orbit computed with SLR, limited by the JGM-3 geopotential to 7-8 cm in the radial direction.
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Figure 7: SPOT-2 DORIS Residuals
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The internal consistency of the solutions in overlapping arcs, for the analysed period, yielded a value of 1.7
cm, which compares very favourably with the aforementioned values of 2.68 cm for altimetry/SLR
solutions and 1.9 cm for PRARE/SLR solutions for ERS.
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Figure 8: SPOT-2 DORIS Orbit Internal Consistency

New Models for Envisat

The high solar activity expected during the Envisat mission will have two major consequences. Most
importantly, the increased error in air density prediction leads to a larger error in the along-track position
and velocity restitution. Secondly, the higher solar activity increases the ionospheric delay effects on the
tracking data, which are not easy to model properly. The first problem is partially compensated by the
higher ballistic coefficient of Envisat compared to ERS. The ionospheric modelling problem does not affect
the SLR data, and can be mostly eliminated from the DORIS and altimeter instruments because both are -
dual-frequency systems. Still, it will be of some interest to compare the performance of the old Rawer-Bent
model with that of the International Reference Ionosphere (IRI), which incorporates data from the latest
period and a prediction for the next few months. Another possibility is to use GPS derived ionospheric
products from the ESOC GPS analysis facilities. This has the major advantage that the very latest state of
the ionosphere can be used, taking then into account any abrupt fluctuation of solar flux and geomagnetic
index.

Other important areas with a potential for improvement are the gravity model, the ocean tide model and the
mean and dynamic sea surface topography models.

The gravity model currently used for ERS is JGM-3, which is complete to degree and order 70. This model
places a limit on the achievable radial orbit accuracy of around 7-8 cm. More recent models with acclaimed
accuracies of 5 cm in the radial direction for ERS are the general-purpose TEG-3 model from the University
of Texas in Austin and the ERS-tailored DGM-E04 from the Delft University in the Netherlands. These
three models may be compared using ERS-2 and SPOT-2 orbit determination. Table 1 shows a summary of
the results, clearly indicating that tracking data residuals are reduced significantly and so are the orbit
consistency value.

JGM-3 | TEG-3 | DGM-E04

SLR - SLR Residual (cm) 6.6 5.2 5.1

Overlap (cm) 5.7 3.1 4.9
Table 1: Gravity Models Comparison
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JGM-3 | TEG-3 | DGM-E04
Altimetry/SLR SLR Residual (cm) 6.0 5.1 5.5
Altimetry Residual (cm) 16.0 15.3 9..7
Altimeter Bias (cm) 9.9 9.7 9.7
Overlap (cm) 33 2.1 2.4
PRARE/SLR SLR Residual (cm) 6.6 . 6.2 5.8
PRARE Range Residual (cm) 7.4 6.3 6.7
PRARE Range-rate Residual (mm/s) 0.86 0.73 0.76
Overlap (cm) 1.9 1.3 20
DORIS (SPOT-2) | Residual (mm/s) 0.56 0.55 0.55
Overlap (cm) 1.7 1.4 1.4

Table 1: Gravity Models Comparison (contd.)

Figure 9 shows that the radial orbit consistency is especially improved using the more recent gravity
model(s) if the tracking data is sparse.
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Figure 9: ERS-2 SLR Orbit Radial Internal Consistency Geopotential Models Comparison

For Envisat it is of interest to predict what the effect of using these gravity models is going to be. The radial
comparisons between the orbits computed with JGM-3, TEG-3 (CST/UT) and DGM-E04 (DEOS) for
different tracking scenarios (see Figures 10a, 10b and 10c) show that differences are driven by the change in
model and not by the tracking data. The worst scenario (SLR only) is not much different from the best
scenario (SLR + PRARE). It is also noteworthy that the differences between TEG-3 and DGM-E04 orbits
computed at ESOC are not far from the differences between the CSR and DEOS computed orbits.
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Another important effect of the use of these improved gravity models is the reduction in geographically
correlated error. One can see this computing the differences between Sea Surface Topographies (SST)
calculated with JGM-3 and the more recent models. Figures 11a and 11b show that this effect is essentially
independent of the type of tracking used in the computation.
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Figure 11b: SST Differences (Altimetry/SLR)

The next important area of improvement when computing precise altimetry products is the processing of the
altimetry data itself. Two significant areas for improvement are the ocean tides model and the ionospheric
model. For ocean tides, the CSR 3.0 model was compared with Schwiderski using ERS-2 data. For the
ionosphere, IRI-95 was tested against the Rawer-Bent model.

Altimeter residuals drop from 16.7 em RMS using Schwiderski to 16.0 cm RMS using CSR 3.0. The
altimeter bias increases by 0.3 cm although no clearly defined trend can be observed in the different arcs.

173



Bachwiderski
BCOSR 3.0

20.0

19.0

18.0

B L6/60/6
£6/60/9

L6/60/€

L6/80/1¢€
L6/80/82
L6/80/52
L6/80/22
L6/80/61
16/80/91

L6/80/€T

£6/80/01
£6/80/L
£6/80/v
16/80/1
L6/10/62

R L6/L0/92

L6/L0/¢€e

R 26/L0/0z

146/L0/LT

N L6/L0/%1

Figure 12: ERS-2 Altimeter Residuals: Schwiderski vs. CSR 3.0 Ocean Tide Model

0

.hm\GO\m

L6/60/9

| L6/60/¢
16/80/1¢
16/80/82

L6/80/5¢

L6/80/2C

' L6/80/61
| L6/80/91

L6/80/€T

L6/80/01

L6/80/L

' 16/80/%
16/80/1

16/10/62
L6/L0/92
L6/L0/€C

£6/L0/0T
| 16/L0/e1

L6/L0/71

ERS-2 Altimeter Bias: Schwiderski vs. CSR 3.0 Ocean Tide Model

»
s

Figure 13

tion of sea surface topographies can add up

the evalua

tres as can be seen in Figure 14.

The impact of the detail in the ocean tide modelling in

time’

locally to several cen

174



-3 3% g o ol

Figure 14: Schwiderski vs. CSR 3.0 Ocean Tide Model

The impact of the ionospheric correction is practically negligible, most likely due to the very low current
solar activity that makes this correction very small. In periods of high solar activity, like for Envisat, in
which this correction should become larger, the use of more accurate models than Bent should bring
noticeable improvements.

Altimetry Products from ERS and Envisat

In order to obtain precise altimetry products, the orbit determination should ideally not use the altimeter data
as tracking data, such that aliasing of the models used in the processing into these products is avoided. A
typical example is the ESOC mean sea surface model used in the processing of the ERS POD solutions,
whose errors risk being propagated into the monthly dynamic topography models which are estimated and
published on the WWW.

For ERS routine operational orbit determination, altimeter data are an extremely valuable addition to the set
of tracking data. For this purpose, a mean sea surface model like the one derived at ESOC is ideally suited,
as long as it is used with a consistent dynamic SST model. This model computed on a grid with size of 0.3°
is based on ERS-1 altimetry data from the geodetic phase and produces much better residuals than the
existing geoid models. Similarly, for ERS-2 POD using laser data, the processing of the altimeter data in the
same way results in the best possible precise for verification of the routine operational products. The ESOC
mean sea surface model was also ideally suited for the relative altimeter calibration between ERS-1 and
ERS-2.

The dynamic SST models computed monthly from ERS-2 POD are affected by the accuracy of the ESOC
mean sea surface model. The latter agrees with state-of-the-art geoid models up to degree and order 17, and
no significant errors must be expected here. The SST models are computed to degree and order 23, and a
constant (with time) error in these higher-degree terms will be aliased into each of the monthly solutions.
This will have no discernible impact on the variations which are observed between the different months, and
which have very clearly shown the effects of the well-known recent EI Nino event.

It has been demonstrated that with the ERS-2 PRARE data, a precise solution independent from altimetry,
but with a very similar accuracy, can nowadays be obtained and it is expected that this will be even more the
case for Envisat, thanks to the almost complete global coverage from DORIS. The ESOC mean sea surface
model will again be a valuable tool in the relative calibration of the ERS-2 and Envisat altimeter
instruments, after which a continued production of monthly dynamic topography models with a delay of less
than a few weeks will be possible. If more detailed geoid models from dedicated gravity missions become
available during the lifetime of Envisat, absolute dynamic topography maps data can be obtained in near-
real time from the Envisat POD carried out at ESOC.

175



THE NAVIGATION PACKAGE FOR EARTH OBSERVATION
SATELLITES (NAPEOS)

Aiming to support the Envisat mission with the highest level of accuracy both in data processing and
environmental modelling, ESOC is developing the Navigation Package for Earth Observation Satellites
(Napeos). This package, based on several years of experience in precise orbit determination and the
processing of tracking data, shall be responsible all orbit and manoeuvre related activities for Envisat, from
the retrieval of the data to the dissemination of both operational and precise products.

Napeos shall inherit from the ERS flight dynamics software the knowledge in precise orbit determination
and orbit control, including the experience in automatic spacecraft operations and real time product
generation. Based on this experience Napeos has been designed as a self-contained package capable of
performing all activities required for spacecraft operations, from the data acquisition and pre-processing to
the orbit determination (operational and precise), precise product generation and multi-arc physical
parameter estimation. On top of this, the most advanced software engineering techniques and the extensive
use of standardisation should make of Napeos a product easy to maintain and enhance.

CONCLUSIONS

Based on the experience accumulated during the ERS ‘missions, ESOC is capable of computing orbits with
an accuracy equalling those of the world leaders in this field. This experience, combined with the use of the
latest available models, will ensure the availability of high-precision orbits and altimetry products for
Envisat, within days from data take.

The various analyses and comparisons shown in this paper further demonstrate the capability at ESOC to
accommodate new models and tracking data types as they become available. This will be further improved
by the use of the Napeos package, for which the capability to implement new models was one of the design-
driving features.
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Isolation of Tracking Error Sources within Orbit
Determination

F. Delhaise”, O. Mikkelsen® and S. Pallaschke
ESA/ESOC, Robert-Bosch-Strasse 5, D-64293 Darmstadt, Germany

The orbit determination programs often apply a least squares estimator
which provides good statistical information on the quality of the ob-
tained solution, but does not provide adequate means for the identifica-
tion of error sources. Isolation of error sources may be achieved with
certain difficulty, e.g., by selecting specific sets of the tracking data and
varying the solve-for parameters in successive runs.

However, the obtained results of this trial-and-error process are often
ambiguous and unhelpful in the identification of the source for the de-
graded orbit determination result. This paper summarizes an investiga-
tion into additional functionality for the detection of unmodeled orbit
determination errors such as station or transponder delay biases or an
unexpectedly high noise level for a particular station. The respective
merits of two different basic approaches involving extensions to the
common least squares method or, conversely, alternatives to the least
squares estimator, were studied.

INTRODUCTION

The trajectory determination problem can be defined as the estimation of a set of p parame-
ters denoted by a p-dimensional vector % given an m-dimensional observation vector y (with
'm » p), the equations of motion f, and the stat1st1ca1 properties of the random noise €:

}=Ff+t ¢))

The orbit determination software used in the Flight Dynamics division at ESOC uses a
Gauss-Newton iterative procedyre based on a weighted least squares estimator. After lineariza-
tion around an initial estimate X, , the estimate of the differential correction is given by:

-1
A% = (FTWF) F' W A} )

EY
where F is the matrix of partial derivatives of f with respect to % evaluated at ¥ = ?co » A 3)
is the vector difference between the observations vector and the computed measurements vector

* EDS Industrien (Deutschland) GmbH, based at ESOC
+. TERMA, Copenhagen, Denmark
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(residuals vector) and W is a weight matrix which is taken as diagonal.

Potential error sources in the orbit determination process are usually identified via the statis-
tical properties of the solution of the linearized problem: the loss function, mean and the root
mean squares values of the residuals and covariance matrix of the estimation error. The value
of the loss function is a useful measure of the degree to which the solution fits the observed data.
The mean value and the root mean square (r.m.s.) of the residuals can indicate major causes of
a poor fit such as unmodeled biases or a high level of observation noise. For a converged solu-
tion, the diagonal elements of the error covariance matrix indicate the dispersion of the estima-
ted parameters while the off-diagonal elements represent the interdependence (correlation)
among errors in the solve-for parameters.

These statistics alone are however sometimes insufficient to identify sources of error in the
orbit estimation process. The purpose of this paper is to investigate additional functionality for
detection of unmodeled orbit determination errors. Two different basic approaches were inves-
tigated (see Ref. 5 for further details).

» Extensions to the common least squares method
» Alternative to the least squares estimator

EXTENSIONS TO THE LEAST SQUARES METHOD

The Gauss-Newton algorithm based on the least squares estimator (also called the /, estima-
tor) is widely used for solving the orbit determination as it constitutes a good compromise be-
tween efficiency and complexity. The main justification for using a least-squares estimator
results from the Gauss-Markov theorem. It states that under the following hypothesis of the
measurement noise distribution:

* the matrix of the partial derivatives F has full rank,

¢ the measurement noise has zero mean,

* the measurement noise has a covariance matrix positive definite known up to a multiplica-
. tive factor,

then the weighted least-squares estimator is an unbiased linear estimator. If furthermore the
weight matrix is the inverse of the noise covariance matrix then the least-squares method cons-
titutes the minimum variance estimator within the class of all unbiased linear estimators. A fur-
ther mathematical justification for the least squares criterion is that it is the maximum likelihood -
estimator corresponding to a Gaussian distribution of the random noise.

In practice, however these necessary conditions are hardly ever completely fulfilled. In the
context of this study, further investigations have been performed to find a way to diagnose the
potential following problems:

« poor choice for the weight matrix (the covariance of the measurement noise is usually not
perfectly known),

 poor observability of one or more solve-for parameters,

s non-zero mean value of noise,

 outliers and bias in the observations data,

» convergence problems in'the strongly non-linear case.

. Before investigating possible solutions to the above problems, the so-called “hat” matrix is
introduced. This is particularly useful because it yields a measure of the observations quality.
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Measurement Quality - “Hat’” matrix
The least squares residuals can be formulated as (see Ref. 8):
Y
F=3-fG
F=(1-V)3

where I is the identity matrix and V is the W-orthogonal projection matrix of the measure-
ments space to the range (F) of the Jacobian matrix F. This is the so-called “hat” matrix and is
formulated as:

3)

V=rEFE WE FwW @)

The matrix V is a (m x m) idempotent matrix with trace and rank p. It is an important matrix
which occurs repeatedly in regression work. Its diagonal elements play a key role in determi-
ning the variance of the residuals. It can be shown that (see Ref. 8):

Var(r;) = (1- Vi,i) 0'2/ w; 5)

where v;; is the i-th diagonal element of the hat matrix, w; is the weight associated to the i-
th measurement and o~ is the variance of the measurement noise.

The diagonal elements of the hat matrix (called here the leverage values) are a good indicator.
of the geometry quality of the measurements combined with their given weight value. The high-
er the value of the diagonal element v;;, the higher the impact of the corresponding measure-
ment on the estimated solution. The measurements whose diagonal elements of the hat matrix
exceed 3p/m are called leverage measurements.

As an example, the leverage values v;; are printed in Table 1 for a typical Ariane Geosta-
tionary Transfer Orbit (GTO) simulated over a tracking interval of about 11 hours. This exam-
ple consists of 2-ways ranges from Malindi (Kenya) and Villafranca (Spain) and antenna angles
from Perth (Australia). The corresponding weighted partial derivatives of each measurement
with respect to each solve-for-parameter evaluated at the initial estimate is also given in the de-
fined range from 1 to 9. The maximum value of the partial derivatives for all measurements with
respect to a particular solve-for parameter is set to “9” and its minimum value is set to “1”.

The highest quality in terms of geometry and weight is reached by the measurements num-
bered 1 (Malindi), 52 (Malindi) and 55 (Villafranca), 2-ways ranges made at the start and at the
end of the tracking interval. These are the computed observations which are the most sensitive
to a slight change in the initial estimate. This is confirmed by the corresponding large values of
the weighted Jacobian matrix.

Table 1 also shows that the leverage values of the angular data are very small, demonstrating
that these observations will not really influence the obtained solution. This is explained by the
fact that the angular data are much less accurate measurements that the 2-ways ranges.

The following additional information can easily be retrieved from the printed weighted Jaco-
bian matrix. The semi-major axis is essentially estimated by the range measurements which are
at the end of the tracking interval. The reason is that the semi-major axis is directly correlated
to the mean motion and the longer the tracking interval, the better the mean motion estimate.
The inclination is poorly estimated by the station Malindi which lies close to the equator (the
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weighted Jacobian values are below 2) but it is better estimated by Villafranca’s range which is
furthermore taken rather far away from perigee and apogee (its weighted partial derivative w.r.t.
inclination reaches its maximum).

Table 1: Residuals - Leverage Values - Weighted Jacobian Matrix?

hhn:!:m stat. type ng (ﬁnser;:gt) m(;/mr;s stand. student | lever. anmcombmnnr
1T 23172 MAL TRNG 1101 [ 20983690 | 0.0082 0318 0453103507 | 162997
2] 2332 | MAL | RNG | 120 | 32167450 | 0.0064 0250 | 028710238 | 122997
3| 2333 | PER | AZX 120 | 323.118 0.0147 | 0573 ) 057310000 | 111111
4
5

23:33 | PER | ELE 120 | 45.778 0.0108 -0420 1 042010000 { 111111
23:52 | MAL | RNG | 131 | 41097270 | 0.0008 -0.031 | -0.033 10137 ] 112996
11| 00:32 | MAL | RNG | 145 | 54534538 | 0.0152 -0.590 | -0616 § 0.080 { 142995
16 { 01:32 | MAL | RNG 159 | 67443624 | 0.0195 -0.756 | -0.789 1 0.081 | 251993
17 | 01:52 | MAL | RNG | 162 | 70316.844 | 0.0017 0067 | '0.070 | 0.084 | 261993
20 | 02:12 | MAL | RNG 166 | 72590097 | 0.0131 <0509 { 0533 {0086 261993
21 ] 02:32 | MAL | RNG 169 | 74307.738 | 0.0078 <0303 { -0317 10086 | 271992
25 | 03:12 | MAL | RNG 175 | 76203.585 | 0.0141 0548 § -0.571]0079 | 371882
271 03:52 | MAL | RNG | 180 | 76186.637 | 0.0180 0698 | 0723 | 0066 | 381881
28 § 03:53 | PER | AZI 180 | 320.816 0.0149 | 0580 | -0.580}0.000 |111111
29 § 03:53 | PER | ELE 180 | 45421 0.0202 -0.78 | -078510.000 | 111111
30 | 04:12 | MAL | RNG | 183 | 75491.652 | 0.0057 | -0.223 | -0230 | 0061 | 481881
31 ] 04:13 | PER | AZI 183 | 318223 0.0936 3.628 3629 10000 111111
32| 0413 | PER | ELE 183 | 43.706 0.0088 0.343 034310000 | 111111
34 1 0452 | MAL | RNG 189 | 72747.763 | 0.0163 0634 | 0653 } 0.058 1481882
38| 05:32 | MAL | RNG | 195 | 68170470 | 0.0661 2.562 2.666 | 0.076 | 591772
42 | 06:12 | MAL | RNG | 202 | 61659.378 | 0.0160 | -0.622 | -0.662 | 0.116 | 691773
44 | 06:52 | MAL | RNG | 210 § 53040.764 | 0.0066 | -0258 | -0281 { 0.160 | 791773
47 | 07:12 | MAL | RNG | 216 | 47879.329 | 0.0008 0.031 0.034 1 0.169 | 891774
49 | 0752 | MAL | RNG | 230 | 35915.199 | 0.0179 0.697 0.803 | 0.246 {1 972884
52| 08:12 | MAL | RNG | 242 | 29556943 | 0.0081 0315 0626|0746 | 942894
55 ] 10:11 | VIL | RNG 125 | 37818.158 | 0.0135 | 0525} -2.042 | 0.933 | 969674

a. Column 5 lists the true anomaly (deg) corresponding to each measurement; columns 8 and 9
list the standardized and studentized residuals respectively; column 10 lists the leverage val-
ues and the last column gives the scaled partial derivatives of all measurements w.r.t. each of
the solve-for parameters: A: semi-major axis, E: eccentricity, I: inclination, N: right ascen-
sion of the ascending node, W: argument of perigee and V: true anomaly.

Weighting Errors

If the number of measurements is large enough for each measurement type and ground-sta-
tion, a possible weighting problem can be diagnosed by comparing the quadratic mean of the
standardized residuals block by block. Measurements are defined to belong to the same block
if they are of identical type and from the same station. A standardized residual s; is defined as:

w; a2 1 >t
s; = |— r;; where 6 =—Frw? (6)
1 6_2 1 m-p

where w; is the weight value of the i-th measurement. The ratios of the quadratic means
should be close to 1 if the weighting correctly reflects the measurement noise.

- A reasonable weighting value of each block can be deduced from the obtained residuals. A
suggested weight value for block “k” is:
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P = A/&i ; where 6§ = 4 P W @

where A is an arbitrary positive constant, m, is the number of measurements in block “k”
and 7y is the residuals vector of block “k”.

For the orbit determination run described in Table 1, the suggested weights are: 1.03 for Ma-
lindi, 1.02 for Villafranca and 1.05 for Perth which is ideal. But when assuming a random noise
for Malindi half of the actual one, the suggested weights are 0.25 for Malindi, 1.02 for Villa-
franca and 1.05 for Perth which corresponds to the exact correction to bring to the assumed
noise level of the three stations.

The Problem of Observability

Multicollinearities among the solve-for parameters (i.e. they are highly correlated) result in
much larger variances and correlations for the least squares estimators. This implies a much
~ greater likelihood of a poor estimate of their respective parameters. Knowledge of multicolline-
arities and their attendant problems is the first step in correcting its deleterious effects. Nume-
rical comparison of the magnitudes of the estimated solve-for parameters and their variance and
covariance must be made with standardized variables in order to remove the distortions due to
different scales. In the normalized space, a measure of the inflation of the variance of least
squares estimators due to multicollinearities is done via the so-called Variance Inflation Factor
(V.LF.). These elements are the diagonal elements of the inverse matrix of R whichis a (p x p)
matrix defined as (see Ref. 4, Ref. 8):

R = K (FTwr) k! (8)

where K is the diagonal matrix formed by the square root of the W-norm of each column of
the Jacobian matrix F.

Another fundamental diagnosis of lack of observability is based on the spectral analysis of
R and especially of the smallest eigenvalue of R (Jl.;, ). It can be demonstrated that the large
components in the (standardized) eigenvectors corresponding to eigenvalues near zero identify
the solve-for parameters that are involved in the multicollinearity (see Ref. 4, Ref. 8).

The factor by which the magnitude of the solve-for parameters vector is increased due to
multicollinearity can be deduced from the following formula (see Ref. 10):

3 Ny N
ir +0 &)
Z m
N . N,
where ¥ is the estimated solve-for parameters vector in the normalized space, 5’:1- is the

exact solution in the normalized space, ¢” is the variance of the measurement noise and H; are
the eigenvalues of the matrix R.

3N3yN

E[xx}-x

As an illustration, the variance inflation factors, the eigenvalues and eigenvectors of the ma-
trix R and the “expansion” factor of formula (9) are printed for three simulated orbit determina-
tion runs applied to:

* aGTO orbit determination with coverage from four ground-stations,
» a geostationary (GEO) orbit determination with a coverage from the four ground-stations,
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» a GEO orbit determination with coverage from a single station lying at the equator.

Table 2: Variance Inflation Factors

a e i Q 0 f
GTO @stab) | 5 | 2 | 1 | 18 | 188 | 3 |
GEO (4stat) | 2 3 3 | 4x10® | 2x10% | 2x10°
GEO (1stat) | 2 2 4 | 2x10° | 2x10° | 9x10%

Table 3: Eigenvalues of the matrix R

GTO @s@) | 0002 | 01 04 09 G 2.9
GEO (stat) | 3x107 | 00002 | 03 06 14 36
GEO (1stat) | 4x107 | 8x10° | 04 05 0.9 4.2

Table 2 shows a clear lack of observability of the right ascension of the ascending node Q,
the argument of perigee © and the true anomaly f-for the geostationary orbits which is well ex-
plained by its small inclination and eccentricity values. For the first GEO for which the coverage
is performed by 4 stations, only one eigenvalue is close to zero while the GEO covered by a
single station shows two direction of lack of observability. These directions given by the corres- .
ponding eigenvectors of R are the following:

GEO-1: 21 = -06i+06Q-04f
GEO-2: ¢ = 06Q+0.70-03f (10)
2, = 0.7Q-0.60+03f

The expansion factor of equation (9) is also a relevant indicator of an eventual lack of obser-
vability of certain parameters. The value of this factor is much larger for the GEO orbit types
(it equals 1 and 6, respectively) than for the GTO (= 2. 107 ). In conclusion, it is clear that the
three angles Q, o and f are very poorly observable, only the sum of the three angles can be
determined with accuracy. This is a well known result for the orbit determination of geostation-
ary orbits but this illustrates the utility of these additional parameters in diagnosing the attaina-
ble degree of accuracy.

Accommodation to multicollinearities

Hoerl (Ref. 9) first suggested using a ridge-regression like algorithm to control the inflation
and general instability associated with the least squares estimates. This algorithm minimizes the
sum of squares of residuals with the constraint:

laZ].: <« 11
K

where o is a positive real number and K is the matrix defined for the equation (8). The rela-
tionship of a ridge regression estimate to an ordinary estimate is given by a form of the follo-
wing kind (see Ref. 10 for further details):
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AF(x) = 2, A} (12)

The ridge estimators are defined as a function of a ridge parameter x, whose value can be
selected by the operator. The popularity of ridge regression is explained by the fact that if « is
chosen suitably small not only will the effects of the multicollinearities be reduced but the ridge
estimator will be closer than the least squares estimator (closer in terms of the total squared er-
rors).

In our software, an approach like the one given by equation (11) was selected. The operator
has the possibility to give an initial estimate of the covariance matrix of the initial estimate Py,
different from infinity. In this case, the least squares differential correction is computed at- eacﬁ
iteration as:

Aduew = (F' WF +P,) ' IFT WA + P}, ARo] (13)

This solution accounts for the fact that the initial estimate }o is known to be accurate to a
confidence gevel given by p, . Therefore, any solution is constrained to satisfy the a-priory
realization X, to within the limits of its uncertainty so that equation (11) is guaranteed to be ve-
rified.

This algorithm is especially useful when the orbit has to be estimated based on only a few
measurements, €.g. shorter after separation or after a long-duration manoeuvre.

A comparison between the two methods (12) and (13) has been performed. Solution (13) has
certainly the advantage that it does not depend on a tuning parameter . However, (13) only
ensures convergence to a solution close to the initial estimate. It will not ensure that the obtained
estimate is more accurate than the least squares estimator. Therefore (13) is suitable only when
the least squares estimator cannot yield any solution at all. In other situations of real multicol-
linearities, a ridge estimate given by (12) is more favourable in order to ensure a more accurate
solution than the usual least squares estimate.

Outliers-Leverage Measurements

An outlier among residuals is one that is far greater than the rest in absolute value. We must
distinguish carefully between a large residual caused by an inadequate model and a large resi-
dual caused by poor data (like incorrect operations of measuring means). The former can be
remedied by improving the model; the latter has no remedy. A criterion such as that of least
squares is very sensitive to large residuals. A few large outliers can transform a potentially use-
ful solution to nonsense (e.g. a negative air-drag coefficient). It is therefore important in least
squares estimation to detect outliers and attempt either to eliminate them or to improve the mo-
del so that they do not influence the estimation.

In our software, this problem is tackled in two ways. On one side it may automatically reject
an outlier and on the other side it may use a so-called robust /, estimator to proceed to a gentle
elimination of large residuals.

The automatic rejection of outliers is based on the absolute values of the standardized resi-
duals. The measurement is rejected if this absolute value is larger than a given threshold. Alter-
natively the studentized residuals could also be used as rejection criteria. These are the raw
residuals r; scaled by their estimated standard deviation:
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Wi
ti = """“'"“‘"-"""—:i ri (14)
(1 - Vu)(’

This studentized criterion has the advantage to be based on residuals following more closely
the normal distribution than the raw or standardized residuals. But according to our tests it is
not always an acceptable rejection criterion. The reason is that the leverage measurements have,
by definition, a large value of the studentized residual. Therefore they are easily rejected even
if they are just slightly off which is easily the case for leverage measurements which are very
sensitive to the initial estimate. See, for example, the high value of the studentized residual of
measurement 55 of Table 1 which is not an outlier.

Automatic rejection is not always advisable. Sometimes large residuals provide information
which other data points cannot. They may indicate physical effects which are not included in
the mathematical model of the orbit propagation.

As a compromise, we may consider that a large residual indicates that the observation is im-
probable and it should be assigned small weight (no cutoff is used). Such a robust estimator
which is by definition less sensitive to large errors has been implemented as a possible option.
The basic idea of this algorithm is to define the weight value of each measurement as function
of the value of its standardized residual from the previous iteration (see Ref. 3, Ref. 4). This then
yields to a reduction of the weight value for the measurements that have large residuals at the
previous iteration. The reweighting at each iteration is defined as:

1 ifri=0

w; = s ry . (15)
I W(S) €0

where s is also calculated from the residuals. It is taken as the median deviation of the resi-
duals (Ref. 4). The HAMPEL function v is defined as follow:

| if (0<|xd <a)
a if (ag|x <b)
y(x) = sign(x){ ¢ - |4 . (16)
— 3¢ if (b<|x<c)
0 if (|1 > ¢)

with the values a=1.7, b=3.4 and c=8.5.

Being less sensitive to measurements with large residuals, this algorithm might in some cases
point out better than the common least squares algorithm the error sources such as a station bias
or an abnormal large measurement noise for a particular station. As an illustration, a GTO orbit
was simulated over one orbital revolution with 2-ways range from four stations: Perth (66
meas.), Kourou (60 meas.), Villafranca (78 meas.) and Malindi (58 meas.). A station range bias
of 600 meters was introduced for Kourou. Table 4 lists the mean and r.m.s. values obtained by
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each of the two methods after convergence.

‘Table 4: I,, robust [, and /; comparison

Common Z,- Robust I, -method 1, -method sum of
method leverage
mean | rms. | mean rm.s. mean rms. | values
Perth | 103 | 127 | 3 | 1 | 3 | 20 | 217 |
Kourou 473 477 593 593 588 588 0.67
Villaf. -140 143 -3 19 -8 22 1.60
Malindi -78 110 0 20 0 20 156

Table 4 shows that the Kourou bias is detectable in a nearly exact way by the robust /, me-
thod via the mean and r.m.s. values. This method consequently yields a solution of a higher de-
gree of accuracy than the common /, method. This is a distinct advantage of this robust estima-
tor.

However, in order to be able to pinpoint error sources such as individual station biases the .
following requirements must be fulfilled. The quality in terms of geometry and weight (which
can be expressed as the sum of the leverage values) of the error-free measurements should be ..
sufficiently large for the algorithm to converge to the solution primarily defined by these error-
free measurements. Thus, the residuals of the faulty measurements will become large. They are
subsequently automatically downweighted by the robust estimator and will then no longer in--
fluence the solution.

Convergence

When starting the iterative process defined by equation (2) with an initial estimate far from
the solution, the actual contours of the non-linear loss function are not well approximated by the
linearization. The Gauss-Newton procedure may converge very slowly, it may oscillate widely
around the solution or it may even fail to converge altogether. An alternative to Gauss-Newton
linearization procedure is the so-called steepest descent method. The basic idea is to move from
an initial estimate into the direction of the “steepest” descent of the loss function. This direction
* changes continuously as the path is followed. Although this method initially converges rapidly,
it slows down when the solution approaches the vicinity of the minimum. Marquardt (Ref. 13)
proposed an algorithm which performs an optimal interpolation between the two techniques.

The implementation of the Marquardt algorithm has been performed as a possible option, by
adding a constant A, to the diagonal elements of the normal matrix. The sequence of positive
real number A, has to decrease rapidly enough after each iteration to ensure convergence. The
following sequence was chosen (Ref. 4):

72

k

7\1‘ = e
(k+1)

k is the iteration number (17)

with yﬁ the diagonal elements of the normal matrix at iteration “k”.
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Test runs have shown that the Marquardt algorithm can provide convergence where the
Gauss Newton method failed, i.e. reaching a negative semi-major axis and an eccentricity value
larger than 1. However due to its reduced rate of convergence, using the Marquardt algorithm
appears advisable only when the original algorithm would have failed.

ALTERNATIVE TO THE LEAST SQUARES METHOD

{; -Estimator

One major drawback of the least squares method is its lack of robustness (i.e. its sensitivity
to large errors). The /; and [, norms are two possible alternatives for minimizing the vector of
residuals of the regression equation (1) (other choice for the norm are possible but seldom used):

Minl3- 7dls;  forp=t,20r e (18)

For the orbit determination with eventual large errors within the tracking data, the /., crite-
rion must be rejected because it assigns high weight to large residuals (since the /., criterion is
to minimize the largest residual).

In the opposite, the /; criterion aims to minimize the sum of the absolute value of the resi-
duals. It is therefore much less influenced by large residuals than [, or even I,. /; solution is
the maximum likelihood estimator corresponding to a distribution of the error which goes to
zero far more slowly than the normal distribution. It, therefore, encompass large residuals that
would be extremely improbable with the least squares criterion.

In our software, two weighted /; algorithms may be used as a possible alternative to the usu-
al least squares method: either a modification of the simplex method as implemented by Barro-
dale and Roberts (Ref. 2) or a modification of the dual simplex algorithm as proposed by
Abdelmalek (Ref. 1). These two algorithms produced results with a comparable degree of ac-
curacy and computing time.

The weighted /; method was tested on numerous example cases with conditions such as a
bias on the station or transponder delay, a bad initial estimate or a high noise level for a parti-
cular station. These examples showed that a degree of accuracy similar to the common least
squares method is attained by the /; solution The rate of convergence is only slightly lower,
especially in the proximity of the approaching the solution. Like the iteratively reweighted least
squares method (see above) the solution is not influenced by a high noise level of a particular
station. Furthermore, and contrary to the least squares method, the exact noise level of each sta-
tion is exactly reflected after convergence by each station’s rm.s values. The /; method can
also be used to indicate the exact value of a previously unknown station bias (see Table 4),
where least squares would tend to even out the residuals for all stations.
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ACCURACY MODELING FOR SHORT-ARC DETERMINATION
OF LOW EARTH ORBITS

S. Kawase’

A concise accuracy model is derived for orbit determination and
prediction. Optical and radar tracking, in the form of single-site single-
pass observation, are evaluated. Orbit prediction errors are formulated
analytically as functions of tracking arc length and prediction time length.
The relative merits of the optics and radars are clarified through the
analysis. These results offer a basis for discussing short-term strategies
of spacecraft near-miss avoidance in low earth orbits.

INTRODUCTION

Suppose a manned space station in a low earth orbit receives a warning of close approach by
another orbiting object, probably a satellite no longer in service. Urgent tracking and orbit
determination of the object will be needed, to analyze the approaching geometry and to work out an
avoidance maneuver. It will be essential to assess the accuracy of the tracking and orbit determination,
because the planning of the avoidance maneuver depends entirely on that accuracy.

It would be best if we could model the accuracy of orbit determination for every possible form of
tracking, but this would be a difficult task if the tracking may involve multiple observation passes
using multiple sensors at multiple sites. A viable, concise model of the orbit determination accuracy
does not seem likely. However, if the orbit determination is “urgent” as mentioned above, then its
tracking period must be short, probably with single-site single-pass observation, and this may change
the situation. The present paper will show that the orbit determination accuracy can be modeled in
concise formulations for that kind of short arc tracking.

In the present paper we first derive the accuracy model for optical tracking. The derivation is
analytic, with its geometrical meaning clarified. The accuracy model is next modified to cover radar
tracking, and finally the analytical results are checked against numerical evaluations.

OPTICAL OBSERVATION AND ORBIT DETERMINATION

Assume that the earth is spherical with radius R and the tracked object is in a near-circular orbit
of altitude 4, as illustrated in Figure 1. The orbital path is assumed, for ease of analysis, to pass near
the zenith of the tracking station, T. (This restrictive assumption will be relaxed later.) Tracking
observations are made when the object is at P,, which is directly above T, and when it is at P; and Ps,
which are at angle © from P,. Thus we have three observation points, with 8 specifying the length of
the observation arc. Although actual tracking will try to acquire as many data points as possible

* Space Systems Section, Communications Research Laboratory; Kashima, Ibaraki 314-0012 Japan.
Phone: +81 299 84 7149, Fax: +81 299 84 7160, e-mail: kawase@crl.go.jp. /
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during the observation pass, here we assume only three points because the smoothing effect of
multiple data points is out of the scope of our interest.

P2

Ps

P1

Figure1 Tracking Geometry

Optically observed are two angles # and v as illustrated in Figure 2, where # measures the
object’s angular position along the flight path, and v measures that across the path. A positive v in
Figure 1 would point toward the back of the page.

Any orbit determination needs an a-priori orbit of the object and this is assumed to come from
cataloged orbits with a typical accuracy of several kilometers.! We assume here, for ease of analysis,
that the observations made at P;, P,, and P; are so accurate that these observations newly determine
the orbital elements. The sole exception is the semi major axis (SMA), which cannot be determined
from single-pass tracking. The SMA has to be improved by comparing the predicted time of arrival
into the observer’s field of view against the actual time. So the determination of SMA is left out of
our discussion and the other five orbital elements are assessed of the accuracy of determination. The
reference time of the orbit determination is set at the time the object passes the zenith point P,.

Flight path u

Figure 2 Optical Observations

Figure 3 Center-Shift Components
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IN-PLANE ORBIT DETERMINATION

The shape of an orbit with small eccentricity can be approximated with a center-shifted circle, as
shown in the Appendix. The center-shift has two orthogonal components D, and D, , as illustrated in
Figure 3, where D, is orthogonal to OT. Besides this, the object can have a constant displacement
M along its flight path, so we have three orbital elements (D;,D,,M ) to define the in-plane

orbital motion. Suppose these elements were initially all zero. If each varies from zero slightly, then
variations arise in the tracking observations; this is examined in detail below.

_\'f’a' D, I(R+h)
Ps P2 Py P, P,

D, /P

r A Sy

Py - ) Py Py

Figure4 Observation Variation due to D, Figure 5 Observation Variation due to D,

An orbital arc visible to the tracking station is short if the orbital altitude is low. Our observation
points P, , P, , and P; then lie nearly in a line as illustrated in Figure 4, and a small fictitious center-
shift D; makes these points move down by D, to P,’, P,’, and P3’. Strictly speaking, A'P;’ exceeds
B, P; because displacements arise along the path —see Eq. (A2) of the Appendix— but this excess is
small so that the change from (P; , P>, P;) to (P,’, P;’, P;’) may be regarded as a parallel
displacement. Displacement AF,' is detected at T through its transversal component D, sin6;
dividing this by the distance TF,=h/cos® makes the following variation arising in the observed u
of P;: » :
du; =—(D, / h)sinBcosd )

The observed u of P, has no variation, so

Suy = 0 @
while PP’ causes the same variation as A A’ but with a change of sign:

duz = (D, / h)sin® cosd 3)

Orbital perturbation and the earth’s rotation are neglected because the object’s time of flight from P,
to P; is short. Consider next the center-shift D, and assume that this shift is a “modified center-shift”
as defined in the Appendix. That is to say, the orbital circle is regarded as rotating slightly, as
illustrated in Figure 3, around fixed P,. This causes the flight path near P, to incline from being
horizontal, as illustrated in Figure 5. The linear arrangement of Py, P;, and P; then inclines by
D, /(R+h), thus causing a displacement in P, by AR'= D,/(R+h)-htan® , and its contribution

to the observation variation is 193



D,

Sy = ———2- sin?@ | @)
This is the same for P;, while P, does not move, so that
D.
Stty = ———2— 5in? 0 6
“3 R+h s ©

Figure 6 Observation Variation due to A/

Finally consider M , the along-path displacement (see Figure 6). Its transversal component causes the
following variations to the observed u of P,, P, , and Ps:

Suy = (M / h)cos? @ )]
Suy=M/h ®)
Suy = (M [ h)cos? 0 ©
Egs. (1) through (9) are combined to form
[ -sc -s*/A4 (D
Suy | = —;l- 0 0 1D,
Suy sc ~-st/4 )\Mm

where s=sin®, ¢ =cos0,and A=(R+h)/h.Notethat D;,D,,and M do not cause variations
in the observed v ; this allows us to invert the relationship, thereby obtaining

(.1, L)
D, 2sc 2sc du,
D,|=h|__A4 4 _ 4 |ls, (10)
M 252 §? 25% |\ s,

Lo 1 o0

which ascribes the orbital element variations to the observation variations. (The lefi-hand side in this
context should be 8D, , 8D, , and 8M while we omit “§ s for simple notation.) Now regard o, , u,,

and du; as denoting observation errors; then Eq. (10) evaluates the error in the in-plane orbit
determination. 194 ’



ORBIT PREDICTION ERROR

Evaluate next the error in predicted orbits. Suppose the object has revolved in its orbit as much as
angle y from P,. (This W may be mean anomaly or true anomaly without difference since the orbit
is nearly circular.) The orbital element errors D) and D, of Eq. (10) give rise to an along-path error.
This error equals the sum of the 8/s of Egs. (A2) and (A4) of the Appendix, which makes
2D, siny +2D,(cosy —1), and this is rewritten, by using Eq. (10), as

(B sc)(~buy +8uy) siny +(A4h/ s*)(~du; +2¢*du, —uz)(cosy ~1).

Evaluating this quantity in standard deviation is our final step. Assume that 6u;, ou,,and du; are
independent of each other and have identical normal distributions with standard deviation ©,; we
then have the error evaluation of
2 Jsinz\y Ny 1+2cos*6

along-path: 4o, — ——— (cosy-1)° @an
sin® sin“@

cos? 6

Next, for the radial error component, sum up the &7 s of Egs. (A3) and (AS5) of the Appendix, to make
— D, cosy + D, sin y . Rewrite this by using Eq. (10) to have

—E—(Eul —duz)cosy + —Ai(—Sul +2¢28u, —u;) siny,
2sc 2s*

and evaluate this in standard deviation in the same manner as the above, to obtain the evaluation of

. ho cos2y ., 1+2c0s*0 . ,
radial: - + sin 12
V25in0 Y cos?6 sin@ v 12

Recall that Eq. (10) contains the relationship M = h du, , indicating that a bias error exists along the
path. Evaluating this in standard deviation makes another error evaluation of

along-path, bias: ko, (13)

Figure 7 Basic Transversal Resolution

Evaluations (11), (12), and (13) have the following physical meaning: If we look upward from
station T and project the angle observation error to the flight path (see Figure 7), then the projection
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1000

along-path

100

10 i
radial
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0 90 180 270
revolution angle V¥ [deg]

L 1)

Figure8 Magnification Factor for Optical Tracking.
From top to bottom in each group are for 6 = 20, 40, 60 deg

falls onto the width of +%c, along the path. We call this width the “basic transversal resolution™
and it is equal to the along-path bias (13). Evaluations (11) and (12) both have the form of “basic
transversal resolution x magnification factor”, and the factors vary with y and 6 . At the altitude of
the space station (/2 =435 km), A4 is 15.7 so that the terms with A4 become dominant in the square
roots of evaluations (11) and (12). The along-path error thus takes its maximum at half a revolution
after the orbit determination, and the radial takes its maximum at 1/4 and 3/4 of a revolution. The
along-path error maximum is four times larger in magnitude than the radial maximum. By recalling
the dominance of the A-terms and looking at Eq. (10) once more, we see that the orbit prediction
error originates mainly from the D, -determination error. That is to say, determining the flight path’s
inclination against the horizontal plane (refer to Figure 5) is the major difficulty in determining the
orbit. The observation arc 6 affects the magnification factors as shown in Figure 8, where the radial
for 180 deg through 360 deg is omitted because it is periodic. A smaller © may cause a problem in
that the newly determined and predicted orbits become less accurate, in some region of , than the
a-priori orbit. This problem could be avoided by weighting the a-priori orbit, but at the cost of
discarding our accuracy model. The along-path factor in Figure 8 becomes less than one near y =0
and y =360 deg, at which points the bias error (13) becomes dominant.

OUT-OF-PLANE ERROR EVALUATION

The inclination of the orbital plane has two degrees of freedom. Consider first an inclination such
that the orbit-normal vector leans towards T (see Figure 9) by a small angle i, . This causes the points

P, , P,, and P; to move uniformly by (R+A)i, to Py’, Py, and P3’, all in parallel to the local
horizontal plane of T. Accordingly, the observed v of P, varies by FA'/TP, , and the same occurs

for the observed v of P3’°, so that we have
dv; =8v; = AcosO-j; (14)
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Figure9 Observation Variation due to j Figure 10 Observation Variation due to i,

The other inclination is illustrated in Figure 10, where the orbital plane rotates around the axis OT
by i,, and this makes the linear arrangement of P; , P, , and P; change its orientation horizontally
by i, with P, being fixed. The displacement FF'= htan® -i, then causes a variation in v, as

ov, = —sinB- i, 15)
and the same, with an inverted sign, in v; as

Only two observation points P; and P; are considered because we are determining two orbital
elements. Note that 7; and #, cause no variations in the observed . Equations (14), (15), and (16)

are combined to form

o) 202
&v;) \de s )\i,
This can be inverted in order to evaluate the out-of-plane orbit determination errors:

iy = (8v; +3v;)/ (24 cosb) a”n

iy =(~0v| +8v;)/(25sin0) (18)
The orbital element errors 7 and 7, cause an orbit prediction error that points out of the plane. This
error equals, at a revolution angle y from P,, (R+ A)(j; cosy +1i, sin y), and this is rewritten, by
applying Egs. (17) and (18), as

ov; +ov ~8v; +0vy |

(R+h)( 2414c0593 COSY * T ine 0 WJ '
Evaluating this in standard deviation assumes the same statistics for 8v;, and v, as those for dus,

resulting in the evaluation of 197 p



ho, [cos?’y Alsin’y
Ty |z
V2 { cos®e sin“@
where o, is the standard deviation of the v -observation error. The out-of-plane magnification factor
has the same periodicity as the radial. It is shown, with its first period omitted, in Figure 8. If 5,=0,,
the out-of-plane error is always smaller than the radial at the same revolution angle W . Evaluations

(11), (12), (13), and (19) thus model the accuracy of the optically tracked orbit determination and
prediction.

out of plane:

(19)

The orbital accuracy may be affected by inaccurate modeling of the orbital dynamics, and such
inaccuracy originates in most cases from the atmospherical drag for low altitude objects. This kind of
‘inaccuracy however, gives rise first to a change in SMA, and through this then to a change in the
along-path motion. Since the determination of SMA was left out of our present discussion, we
analyzed the error relationship only between observations and orbital elements.

RADAR OBSERVATION

Radar provides observations of range p,azimuth o, and elevation . Variations arising in these

observations are examined here, and the tracking geometry of Figure 1 and Figures 4, 5, and 6 are
again referred to. We need only two observation points, P, and Ps in Figure 1, because the radar
observation (p, o, €) has one more degree of freedom than the optics. The other assumptions made

so far do not change.

Consider first the in-plane orbital elements. Figure 4 shows that variations in the elevations €; and
€3 of P, and P; are written in terms of u simply as 8¢, =8 and 8e; = —du;, so that we have the

following:
g, = —(D, / h)sinBcosB (20)
g5 = —(D; / h)sinOcos (21)
D
5g, = ——2—5in0 22
o1 R+h s 22)
D, .
83 = —2—sin’0
€3 ‘R+hsm (23)
8¢, = (M / h)cos?0 24)
8e; =—(M/ h)cos*0 (25)

Next refer to Figures 4, 5, and 6 and see that the displacement PF,' creates, through its line-of-sight
component, variations in the range p, of Py, as

dpy =—D; cosb (26)
D,h .

8p, = ——=2 ] 27
Pl R-&-hsm @

dp, =—-Msin® (28)

and similarly to that of P;, with some sign changes, as

8p; =—D, cosO (29)

opy = RDj-};z sin® 30)

8p; = Msin6 (€29
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The optical angles can be calibrated accurately to the reference positions of the fixed stars seen in
the observational field of view. This is not the case for radar, as its elevation measurement may be
affected by an unknown bias error. What the radar actually does is thought to be the following. Let
€ = g, — &5, the difference between the two elevations, make our tracking observation. The bias error
commonly existing in €, and in &, then cancel out so that an accurate observation of € can be made.
Accordingly, Egs. (20) through (25) reduce to the following three equations:

8 =0-D, 32)
A 2D, .
3 = —E:'Zsm2 0 (33)
88 = (2M / h)cos? © (34)
Combine Egs. (26) through (34) and denote s=sin®, ¢ =cos0,and 4= (R+h)/h tomake
(8p,) (-c¢ ~-sl4 -s (D)
dp3|=|—-c slA s D,
\ 58 0 -2s/(4h) 2c*/n)\M)
and invert it as '
(D, -1/e¢e -l/e 0 \[(5p;)
D, =% —~Actls Ac*ls - Ah||8p, (35)
\M -5 s h )\ 8¢ )

in order to evaluate the in-plane orbit determination error due to the observation errors 3p,, dp3, and
3¢ .
Evaluating the orbit prediction errors from Eq. (35) proceeds in the same way as that for the optics.
Set the error standard deviations of range and elevationto o, and o, and the resulting evaluations
are

.2 4 2
0 k
along-path: o \/:2_ St 4 +A2(cos +———) cos y —1)? 36
g-p o \/cosze e 2 (cosy—-1) (36)
. S, |cos?y- z[cos“e kz} .2
radial: —£& +4 +—|sin 37
\E\/ cos? 9 sin?® 2 v ©7

These now have the form of “range resolution x magnification factor.” The constant &£ = hc; /o, is

the ratio of the elevation’s basic transversal resolution to the range resolution, which depends on each
radar and on the orbital altitude. Except for this dependency on k , the way that errors (36) and (37)
vary with the revolution angle v is similar to errors (11) and (12), eliminating the need to plot them.

Particular to the radar is the absence of 1/sin6 at the head and this makes the radar highly accurate
when the observation arc is short.

The along-path bias error from Eq. (35) is M = (—sin®-8p, +sin0-8p; +h8€)/ 2, which is
evaluated in standard deviation as
sin’0  k?
2 4

along-path, bias: o, (38)

Finally, there is the out-of-plane error evaluation. In Figure 9, the displacement FF' causes a
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variation in azimuth by angle £PP,F,', which is larger than Sv, the optically observed variation.
But it is larger simply because of the radar’s azimuth-elevation mechanism, and the azimuth
observations are thus physically equivalent to v, and v;. Therefore the out-of-plane evaluation can
be based on (19), as

ho, |cos’y + A%sin? y
V2 ¥ cos?o sin@
where o, is the azimuth error standard deviation. Evaluations (36) through (39) thus model the
accuracy of the radar-tracked orbit determination and prediction.

out of plane:

(39

.NUMERICAL TEST

Our analysis is based on a number of assumptions and approximations. The analytical results were
therefore checked against more exact numerical error-evaluations.

The assumptions of two-body orbits along with two or three observation points is the same. Again,
the earth’s rotation is neglected. The orbital element variations propagate, without approximations, to
the observation variations through the numerical processing of satellite motions and tracking
observations. This provides the normal equation of the least square method, from which an exact
error covariance matrix of 5 x5 can be used to evaluate the orbital element errors. These errors are
then Kepler-propagated in order to evaluate the orbit prediction error; this makes our check-reference.
The error standard deviations of optical and radar angles are all assumed to be 10 arcsec and that of
radar range to be 21 m, and the orbital altitude to be 435 km; this makes constant % =1.

error [km] error [km]
10 10+

0.1/ 0.1

't
0 % 180 210 360 0 % 180 270 360
revolution angle ¥ [deg] revolution angle V [deg]
a. Optical b. Radar

Figure 11 Numerical Test
—— is analytical; o (along-path), + (radial), x (out-of-plane) are numerical; 0 =28 deg
200
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The analytical and numerical evaluations were compared. Figure 11 shows that the evaluations
agree each other with small discrepancies, if any. The analytical and numerical evaluations were
compared at the error-maximums (i.e., at =180 deg for along-path and at y =90 or 270 deg for
radial and out-of-plane) while the observation arc © was being varied. The results, shown in Figure
12, indicate the practical validity of our analytical model.

error-maxinum [km] error-maximum [km]
1004 1003
10 10

Lt asanat

14 14
0. 1 L 1 ¥ [) ¥ 0- 1 L 1 T 1 ¥
0 20 40 60 0 20 40 60
observation arc 0 [deg] observation arec 0 [deg]
a. Optical b. Radar

Figure 12 Numerical Test

—— is analytical, o + x (same as in Figure 11) are numerical

The “zenith passing path” has been the most restrictive of our assumptions. Let the orbital path be
off the zenith by angle P as viewed from T. This causes the numerical evaluation for the optics to
differ from what appears in Figure 11(a). This difference, which was seen only in the out-of-plane
error, caused the evaluation plot to elongate and have an increased maximum. (Its minimum changed
little.) This increase in the error-maximum, which is shown in Figure 13(a), depends on B and ©.
The same thing also occurs with the radar, where the along-path error suffers the increase in error-
maximum as shown in Figure 13(b). The results suggest that, practically speaking, our analytical
model still works for non-zenith passing paths, except for optical tracking with a short observation
arc and a large off-zenith angle.
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error-maximum, out-of-plane [km] error-maximum, along-path [km]
3 3

M
14 1-4=2 rood
0 : Y | } 1 !I 0 L] | i 1
0 10 20 30 40 50 ¢ 0 10 20 30 40 50
off-zenith angle B [deg] l off-zenith angle § [deg]
a. Optical b. Radar

Figure 13 Effect of Off-Zenith Path (Numerical Evaluation)
From top to bottom are for 0=28, 42, 52, 60 deg

SUMMARY

Although restricted to a particular case of single-site single-pass tracking, we have established
orbit determination accuracy models for optical and radar observations. The principal difference
between the optics and the radar, in terms of our analysis was the radar’s superior accuracy of in-
plane orbit determination when the observation arc is short. Otherwise, the orbit prediction errors that
arose were common to optics and radars, with major error sources commonly being the difficulty in
determining the flight path’s inclination.

That the orbital prediction errors take their maximums and minimums at particular points of a
revolution will be worth notice when near-miss avoidance strategy is discussed. More precise
modeling obviously needs to consider the error in SMA. Its effects, however, will stay small in short-
term orbital predictions.

The present accuracy modeling will offer a basis for discussing short-term strategies of near-miss
warning and avoidance in low earth orbits.
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APPENDIX
Shape Of Near-Circular Orbit

Consider an elliptical orbit with semi major axis ¢ and small eccentricity e, with its focus at O in
Figure Al and perigee at P. Let S be a satellite at true anomaly f , and O a point away from O by
ae to the opposite of P. Find then the distance from O’ to S.

The formula for the satellite radius is 7 = a(1-e2)/(1+ecos f), which is approximated for small

e by A
r=a-aecos f (Al)

'The distance in question is then writtenas O'S =Jr2 +(ae)? —2raecos(n — f) , which reduces, with

o2 being neglected, to O'S =a . The shape of our orbit is therefore a circle with radius a , centered
at O’, which is shifted from O by D=qe.

Position Variation due to Center-Shift

Suppose we have a satellite in a circular orbit, and this satellite is at mean anomaly m. And
suppose that the eccentricity changes from its initial zeroto a small e resulting in a center-shlft by
D = age . Find how much the satellite’s position varies.

Satellite true anomaly f is related to the mean anomaly m by f —m = 2esinm . The position

thus varies, along the orbital path, by :

o8l =a(f —m) =2aesinm=2Dsinm (A2)
As for radial variation, see Eq. (Al) and set &r=r-a=-aecosf . Approximate ecosf =
ecosm [1— (f —m)sin m] = ecosm, since e(f —m) is small to the order of e2. The variation is then
written as ,

&r = —aecosm=—Dcosm - (A3)
We regard this D in Egs. (A2) and (A3) as causing the satellite position variation.

Modified Center-Shift

Suppose we have a satellite in a circular orbit, to which the following two events occur:

a) The center shifts by D.

b) The satellite displaces along the path by —2D .
This combined set of events is referred to as a “modified center-shift,” and it makes Eq. (A2) change
to 8/ =2D(sinm-1), while the 37 in Eq. (A3) remains valid with little error. Let m'= m—90 deg
and use this m' to rewrite 8/ and 3r as

6l =2D(cos m'-1) (Ad)

&r = Dsinm' ; (AS)
What we are doing is better understood by looking at Flgure A2 as follows: Our initial orbit is
centered at‘O, with Q being a quarter revolution point. S is a satellite at revolution angle ' from Q.
Now event a) occurs so that our new orbital circle becomes centered at O°, while the new orbit passes
Q because event b) assures 3/.= & =0 for a satellite at Q. Satellite S then experiences a position
variation that obeys Egs. (A4) and (A5). Note that 0°Q is a radius of the new orbital circle, while the
length O'Q is virtually equalto OQ forasmall D.
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Figure A1 Shape of the Orbit Figure A2 Modified Center-Shift
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ORBITAL PERTURBATIONS USING GEOPOTENTIAL COEFFICIENTS UP
TO HIGH DEGREE AND ORDER: HIGHLY ECCENTRIC ORBITS

S &R QG

Rodolpho Vilhena de Moraes* and Edwin Wnuk'

Several methods have been proposed for calculations of the eccentricity
function for a high value of the eccentricity, however they cannot be used
whenthehxghdegreeandordercoefﬁments of gravity fields are taken into
account. The method proposed by Wnuk’ is numerically stable in this case, but
when is used, a large number of terms occurs in formulas for geopotential
perturbations.

In this paper we propose an application of expansions of some functions of the
eccentric anomaly E as well as Hansen coefficients in power series of (¢ - -e),
where e” is a fixed value of the eccentricity derived by Da Silva Fernandes®™**.
These series are convergent foralle < 1.

INTRODUCTION

Recent applications of artificial satellites needs the description of the orbital motion
under a precision of centimeters. For example, the radial component of position of
altimetric satellites such as ERS-1, ERS-2 and TOPEX/POSEIDON must be determined
with a precision of a few centimeters in order that the altimetric measurements can be
conveniently used.

Also, in order to avoid collisions of important and big spacecraft, such as future
space stations, the position of objects (active satellites and space debris) must be computed
with a precision of the order of meters.

Taking into account the perturbations due to the geopotential, theories of motion of
satellites must be developed, as well as models for the potential, to attam the expected
level of description of the satellite's motion.

Within this aim, the well-known Kaula’s geopotential perturbations theory’ can be
slightly modified (Wnuk®) introducing the lumped coefficients which group terms with the
same frequency. Lumped coefficients simplifies the derivation of the expressions for the
perturbations and enable us to consider a great number of geopotential coefficients.

* Grupo de Dinimica Orbital e Planetologia, DMA-FEG-UNESP, 12500-000, Guaratinguetd, SP, Brazil, e-mail: rodolpho@feg.unesp.br
* Astronomical Observatory of the Adam Mickiewicz University; Poznan, Poland, c-mail: wiuk@phys.amu.edu.pl
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Orbits with a high eccentricity (e ~ 0.5 - 0.8), besides near circular ones, are very
popular and are used in many satellite missions. For example, some artificial Earth
satellites, like Molnyia type satellites, are placed in orbits with e = 0.6 -0.7, geostationary
transfer orbits (GTO) have the same eccentricity, and orbits with the similar eccentricity
are used in some planet’s missions (e.g. past and future Mars’ missions, Gallileo mission).
Usually numerical integration of the equations of motion is applied in calculation of orbits
with a such high eccentricity. However, in some applications one needs an analytical
description of the satellite motion.

Analytical theories of an artificial satellite motion give formulas for perturbations
that are in a closed form for the eccentricity only in a case of perturbations due to some
zonal harmonic coefficients. In the general case, when an arbitrary degree and order
spherical harmonic coefficients have to be taken into account, series of expansions in the
eccentricity have to be used in formulas for perturbations. Some difficulties occur when
the analytical theory of a satellite motion is used in calculations of a precise position on a
highly eccentric orbit. The source of these difficulties is the calculation of the eccentricity
functions (Hansen’s coefficients) and their derivatives. The Kaula’s formula for the
eccentricity function is not numerically stable for a large values of eccentricity and
simultaneously large values of indices.

Several methods were proposed for calculations of the eccentricity function for a
high value of the eccentricity ( e.g. Szeto and Lambeck’, Gooding and King-Hele®,
Rosborough and Lemoine’,), however they cannot be used when the high degree and order
coefficients of gravity fields are taken into account. The method proposed by Wnuk' is
numerically stable in this case, but when is used, a large number of terms occurs in
formulas for geopotential perturbations.

In this paper we propose an application of expansions of some functions of the
eccentric anomaly E as well as Hansen coefficients in power series of (¢ - ¢), where e is a
fixed value of the eccentricity derived by Da Silva Fernandes™*. These series are
convergent for alle < 1.

PERTURBATIONS DUE TO THE GEOPOTENTIAL

The geopotential V" expressed in orbital elements can be put in the following form

(Wnuk®):

N N @
V=QM-+§—M-Z > DV m(Crlcosy,,, +S¥siny ), (D
r a . m=0k=—N g=—Q
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where

JFhn (2)
S kg = z Q;:S_[m 5
J=h

are the generalized lumped coefficients, C.',,,,, and S’,_m are normalized geopotential
coefficients,

(O ( )Af,,,(}m_,‘,,zq 3)

are functions of the normalized inclination function 4, (I)=F,, y,(/) and of the
eccentricity function G, (e) (Kaula®),

wmkq(m,QM,G):kw+(k+q)M+m(Q-—®)+(k—m)§ , @
Ji= max [k, +2E(m—k, +1)/ 2Lk =|d+ 256, +61.)) »

7 = (DECD2,

N= max/, O=max|q|, E(x) is the Entier function and the symbol  "stands for
summation with step 2.

The general form of the formulas for the first order geopotential perturbations in the

quantity € (an orbital element or a component of the radius vector) is the following
(Wnuk™'°, Wnuk and Breiter'"):

II Mb

(Azqu COSY mpg '*‘B;kq sin l//,,,kq), 5)

where the amplitudes A,f, o (a e,l ) kg (a e,l ) are functions of generahzed lumped
coefficients-C*, §*

As an example, Fig. 1 shows the perturbations due to the geopotential for the
Brazilian satellite SCD1. The perturbations obtained are given as function of the order m
of the harmonics. The 70x70 JGM-3 (Nerem at al.'?,) geopotential model has been used in
calculations. The spectrum of the perturbatlons shows that coefficients of high degree.and
order must be taken into account if it is necessary to attain precision of centimeters.
Estimated values of perturbations in components of the radius vector (the radial,
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transverse and normal components) are plotted on fig.2. Figure 3. shows differences
between numerical integration and the analytical method for the orbit of SCD1 satellite in
the case of tesseral harmonic perturbations. One can see very good agreement, on a level

of 1 cm, of the analytical theory with numerical integration.

Amplitude (meters)
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Fig.1. Total perturbations due to the geopotential for the Brazilian satellite SCD1.

Fig.2. Perturbations
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Fig 3. Differences between numerical integration and the analytical method for the low
eccentricity orbit of the Brazilian satellite SCD1.
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HIGHLY ECCENTRIC ORBITS

The Kaula’s eccentricity function G;, ’q(@ is related to the Hansen’s coefficients

xgr (e) by the following equation:

RS i i C) ©)

The Tisserand"” (1889) definition of the Hansen’s coefficients X7™ (& as well as

the Kaula’s’ (1966) formula for the G (& function are sums of terms, which include

factorials and binomial coefficients. This formulation is not numerically stable at the hlgher
eccentricities. In the case of high eccentricities Wagner** and Gooding and King-Hele®
replaced Kaula’s formula by an integral formula, which was next used by Rosborough and
Lemoine’ in the sensitivity studies of Mars orbiters for Mars gravity recovery. The integral
formula works very well for high eccentricities, however because of computation time and
some numerical instabilities, its practical application is limited when indices / p, g reach
high values.

Following Da Silva Fernandes™* we propose to calculate the Hansen’s coefficients
X "’(e) from the following power series of (e - e'),

o) g

X:7(e)= Z (e~ T xm(@)_. ()

where ¢” is a fixed value of the eccentricity. This series is convergent for all values of the
eccentricity e < 1 such that le - e'l <p(e'). The values of the convergence radius p(e')

are given by Da Silva Fernandes®.The values of Hansen’s coefficient of the larger
eccentricity e are calculated from the power series with coefficients of derivatives of
Hansen’s coefficients of the smaller eccentricity e

The derivatives of the Hansen’s coefficients are calculated with the use of the
following formulas (Giacaglia™®):

xer@=3 3" (), ®)

520 jmes S+ J
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where J,(x) is the Bessel function,

-1 ; e
fn,.f,‘ ﬂ = 1+ﬂz _ﬁ Jﬁzs: with ﬁ-': (9)
D=y en o
n-m+l ifn-m+120 ) n+m+l-s ifn+m+1 20
and s = ) g = ) :
o ifn-m+1<0 - ifn+m+1<0

The function f (ﬁ) may be expressed as the following power series of the eccentriéity e
(Jarnagin'®):

fn,s.j(ﬂ) = i[z(”n +2i— .2+ J + 25) _ (—-n +2i —.l + j + 25)}(9 2i+ j+2s . (10)

i=0 ! z

The derivatives

%X;‘"‘@):i il (n—m+l)(n+m+1)[zl:(3 ;e'r #6) 6‘::’ Jk_mj(ke)] (11)

5=0 jos s s+ =0

may than be easy obtained, if we use the following relations for derivatives of the Bessel
functions:

d’ 1 ol
L )= 3 5] o) 2

Using the above formulas one may calculate Hansen’s coefficients for an arbitrary
values of the eccentricity and arbitrary values of indices. This method of calculation of the
eccentricity function enables to obtain geopotential perturbations for orbits with high
values of the eccentricity and high order and degree geopotential coefficients. As an
example, fig.4 shows geopotential perturbations for the orbit with the eccentricity of 0.73.
One can see that even for the harmonic order of 40 perturbations are on a level of meters,
and resonance effects have to be taken into account for the higher orders. Because of the
resonance effects the comparison with numerical integration (fig.5) is a bit worse then in
the case of near circular orbits, but still is on a level of a few meters.

210



Amplitude (meters)

satelits: test1 a=24470 km
e=0.723
1= 61.0 deg.
LN DL U LA ML R L
10 20 30 40 50 0 70
Harmonic order m

Fig.4. Total perturbations for the high eccentricity satellite orbit.
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Fig.5. Differences between numerical integration and the analytical theory for the high
eccentricity satellite orbit.
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Fig.6. Perturbations in components of the radius vector for the high eccentricity orbit.
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PERTURBATIONS IN COMPONENTS OF THE RADIUS VECTOR

Formulas for geopotential perturbations in the radial, transverse and normal
components published by Wnuk and Breiter'' has some functions of the eccentric anomaly
as factors. Due to the simultaneous presence of the eccentric-and mean anomalies in these
formulas some difficulties occure. In order to overcome this difficulty let us consider the
H(E) functions introduced by Da Silva Fernandes® given as

H(E) = - z Z“’s T unl0)| i H-1M) =S5, ()|, H(nM)} 13)

where H(E)is an analytical function of the eccentric anomaly E, ¢” is a given value for
the eccentricity e and Az = (e —e"). This expression is convergent for every M as long as
{e - e"l < p(e”), being p(e”) a positive real number (Da Silva Fernandes®).

Using the H(E) functions, and after a lenghty calculation, the formulas for the radial

component Ar, the transverse component A4 and the binormal components Abcan be
expressed by the following series, convergent for high eccentricities:

N N Q

Ar=an)’ > >y, {nsiny +

m=1k=-N q=-Q

)

L L

—I—Z Z {r, cos(y + sM) + 1, cos(y — sM) + r,sin(y +sM) + sin(y —sM)} },

s=1 t=1

where

T R;
=(Th, - ';"4 e+Ty.e)cosy +(R,, -——Zlﬂe+R,";‘qe),

T2
kg 3,1, 1 4 721
L= ne' (cqtCpn)—TuglCy+C10)— TotgDse »

2
kg 3 1 1 1
L= 2 (CqtCpn)—Tu(Cy +Cpu)+ Tr:kqbst’

2
R, PR IR
r4 = _R;qb:.t + e (csx +cs,L+l)— Rmkq(csl +CS.L+1)’
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RZ
= R;’qb:t + e (C +c Lﬂ) R:utq(c +C L+l)

N N Q
Ah=any. P D Vinf A cosy + A, siny +

m=1 k=-N q=-Q

(15)

}-ii{l cos(¥ +sM)+ A, [cos(¥ ~sM )+ A sin(y +sM )+ Ag sm(y/ sM )}

2 s=1 =1

where

R5
A= —3e-—§"'5q—+R,f,kq ,
5

T,
— 2 mig
}{2-—3e-2—+T,fkq,
. 5 R7
A= Rﬁ.nq(c +cs,L+l)+ _Rnkq(a +as.L+1) Rmkqbl’
5 ' 7
z4=aqu(c:,+c:lﬂ)+Rf+R;kq(a bala) ""*q BB,

T, y i
}'5=Tr:kq(c:t+c:,L+l) (c +c L+1)+T:@(a +as.L+l)+ = b +7, b:n

T yjid
Ag=Th(ch+cCrn)- (c + € )+ T (A + sy ) — ""“’ Tor b -T.bh.

b +ZZ{b5cos(w+w+sM)+bccos(1//+a)-—sM)+b.,cos(y/-—m——sM)

s=1 =1
+ b, cos(y/—-co—-sM)+bgsin(y/+co+sM)+bwsin(x//+co—sM)
+b, sin(y —w+sM)+b, sin(y ~ o —sM)}},
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where
b =—e(3R;, —J1-€’R,, +3R, ),

=—¢(3R ,“,—\/1 -e’R;,, —3R.,.),

by = (3T, +1-¢ g 3T )
b, = —e(3T%, —1-& T, +3T2, ),

b=-R,d, e V1—e’b
V1-¢?
e

R:'kq(cst + cs,L-x-l) + R:-qust + R;:tq v1- ezbst

b& = _R:daqut -
NI
e

b7 = R:-kqut + R::kq(cst +cs,L+l)+R::kqut +R:kq Ul_eszt

b8=R;kqu,—v1;e2Rm,q(c +,p0)— Roud, + R N1-€B,,

J__

b, =T d, +——T5 (¢, +C.p )~ Tod, - ToN1-€b,,

hod

b10=T,:kqur"‘ (C +C ) T9 d, +T9 Ji-¢€%b
b, T8 d, - T8 mig(Ca +C L+1)—Tqud“+Tm9kq\/l—e2bn,
blzz_T::kqut T:@( +Corau)— d T9 vi-é€%b,,.

Here, ¥ stands for v, . The coefficients Rinkq and T,;kq ,i=1,...,9, as defined in (Wnuk
and Breiter'"), are functions of the lumped coefficients and it is worthwhile to mention that
their expressions have i in the denominator. The terms a.,bg,Cq. cland dy are
functions of the eccentricity e defined as follows (Da Silva Fernandes®):
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2(e=¢)" d+ [3,6s0) _2(e=¢) " g
Pa =3 (-1 de“‘[ e L ’ ®=3 (-1 de[ ds’ (SC)L-

w11 ayt-1
2 (e=€’) g [ d L (e=e) T g [2(1—-e) ]
= — S iRl sy J
e (t-1t de” [e de J‘(SE)LC- ’ C (t-1)! de"'| e +(se)

°
=€

e-¢’)” at
2((': 1;1 pycy RGO

m—
-

2 (e e')H dt
ds = Po(t-1) de' [ (se)] .

.

where J(x) are the Bessel functions of order n for the variable x.

CONCLUSIONS

New formulas for computation of the orbital perturbations due to the geopotential in
radial -transverse-and binormal components, valid for highly eccentric orbits, were

cos

derived. The formulas were transformed to the form ) 4, as it is usual in

i

perturbation theory.
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ON THE ANALYSIS OF LUNAR ALBEDO EFFECTS ON LOW
'LUNAR ORBIT AND GRAVITY FIELD DETERMINATION

Rune Floberghagen Pieter Visser Frank Weischede

Massimiliano Vasile n 5 W

ABSTRACT

A force model for the lunar albedo effect on low lunar orbiters is developed on
the basis of Clementine imagery and absolute albedo measurements. The
model, named the Delft Lunar Albedo Model 1 (DLAM-1), is a 15 x 15
spherical harmonics expansion, and is intended to improve force modeling for
low satellite orbits, and moreover to help avoid aliasing of non-gravitational
force model defects in future lunar gravity solutions from satellite tracking
data.

The development of the model from the available lunar albedo data sources is
described, followed by a discussion on its calibration using absolute albedo
measurements. Further interpretation of the model is based on a comparison
with main selenological features. Next, the implementation of DLAM-1 in
satellite force computations is outlined, with emphasis on computation costs.
DLAM-1 is also applied in low lunar orbit determination, and results for
typical orbits of current and prospective satellite missions are presented.
Finally, the effect of lunar albedo on future solutions for the gravitational
potential of the Moon is presented. In this regard, particular interest is on
gravity mapping from global data sets, e.g. satellite-to-satellite tracking, which
is expected to be one of the experiments of coming lunar missions. It is shown
that albedo-induced orbit perturbations have a magnitude and frequency
signature which are non-negligible for precise orbit and gravity modeling.
Radial orbit errors are in the order of 1-2 m for one week arcs.
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NAVIGATION AND GUIDANCE ERROR ANALYSIS
OF SELENE LUNAR LANDER
CONSIDERING ORBIT DETERMINATION ERROR

Hayato Oono'
Shinich Ishikawa'
Ken NakajimaTt
Kentaro Hayashift
Rie Odakatt

Generally, to achive the high accurate navigation, both the radar
altimeter and the inertial measurement sensors consisting of the
accelerometers and the gyros are used during the powered decent to
the lunar surface. In the current conceptual design, the SELENE
(SELenological ENgineering Explorer) lander is considered to have no
way to use the radar altimeter during the most part of the powered
decent from the restriction of cost,weight,etc.. Therefore, the initial
navigation error of the lander at the start of the powered decent
brings about an important influence on a safe landing. This initial
state error corresponds to the accuracy of the orbit determination in
the ground system. To relax the effect of this initial state error, we
carried out the accuracy analysis of the orbit determination by using
the satellite-to-satellite tracking via a lunar relay satellite. The
obtained results are then used in the navigation and guidance error
analysis. It can be shown that there is the adequate possibility of the
safe landing by the navigation with the only inertial measurement
sensors during the braking phase, In this paper, the nominal
trajectory, the guidance method and the results of error analyses
mentioned above are reported.

INTRODUCTION

The SELENE (SELenological ENgineering Explorer) mission will be carried
out by a probe combination in the beginning of the next century. The probe is
composed of a Lunar relay satellite, a Lunar observation satellite and a Lunar
lander. They will be launched by an H-IIA rocket in the summer of 2003 year. The
lander will be on a Lunar circular orbit with the lunar observation satellite and will
be operated for a period of about one year, the end of the program of the Lunar
surface scientific observation. After that, the lander will be released from the lunar
satellite and after the de-orbit maneuver initiated the powered decent from its
perilune point at an altitude of about 15 kilometers. We call a phase from an altitude
of about 15km to reaching an altitude of about 4km BRAKING phase.

+  Guidance and Propulusion Technology Labaratory. Office of Research and Development, National Space
Development Agency of Japan. Tsukuba Space Center, Sengen 2-1-1. Tsukuba-city, Ibaraki. 305 Japan

¥t Mitsubishi Space Software Co.,.Ltd.
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In this phase, the navigation of the lander is based on the data from an inertial
measurement unit. This unit is consisted of accelerometers and gyros. Therefore, the
initial state error at the Powered Decent Initiation (PDI) brings about a great
influence on its terminal point state. The cause of this initial state error at PDI is
the error of the ground base orbit determination. Especially, the uncertainty of the
lunar gravity potential influences the accuracy of the orbit determination seriously.

We performed the orbit determination analysis considering the uncertainty of
the lunar gravity potential and the navigation and guidance error analysis based on
the above result to confirm it’s feasibility as the primary analysis of SELENE lunar
lander mission . Figure 1 shows the flow of these analyses we performed.

PRIMARY ANALYSIS

NEXT PHASE ANALYSIS
Figure 1 Flow of the Primary Analyses

First, we performed the trade off study about the powered decent guidance, and
selected a candidate one from this result. To clarify the tolerance of position and
velocity error at the powered decent initiation (PDI), using the selected guidance
method, we carried out the sensitivity analysis of initial state error with respect to
the state at the powered flight terminal point.

Next, we tried the covariance analysis of orbit determination accuracy for the
lander including the tracking system with a lunar relay satellite. In this covariance
analysis, especially, we considered the error of Lunar potential model Lun60D (Ref.
1). Then we performed the total error analysis considering the initial state error, the
thruster error and the error of onboard inertial measurement sensors. Finally, we
redesigned the nominal trajectory to land safely from the results of the above
analyses.

NOMINAL TRAJECTORY

Table 1 shows the lander characteristics, In Figure 2, we depict the pre-
liminary nominal trajectory of the braking phase in powered decent we assumed.

Table 1
LANDER CHARACTERISTICS

Initial Mass (ka) _Thrust Force (N) Exhaust Velocity (m/s)
856.000 1700.000 3098.901
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Figure 2 Preliminary Nominal Trajectory

This trajectory was designed using the bilinear tangent law to minimize the time
_transfer under the restriction of along track is free and the thrust magnitude is fixed
(Ref. 2).

POWERED GUIDANCE

As the candidates of guidance method for the braking phase, we prepared for
the following three types of guidance method.

The first is Proportional Guidance (G1), this guidance scheme is represented by
the following equation.

;’D(t)=ro+rlt (1)

Here, r; is desired selenocentric radius. 7, and r; are constants.
The second guidance is based on Linear Tangent law (G2). In this guidance
scheme, the desired thrust direction vector Xj, is
~-X;+(p+qt)¥Y,
Xp(1)=—% a @
N1+(p+qt)

where X; ,Y ; indicate the along track direction vector, radial direction vector
respectively, and p, g are constants. The minus sign before X; in Eq.(2) means this
guidance is the braking of velocity.

The final guidance (G3) desires the thrust direction X, as

X,(t)=Xscos(0+wt)+Y;sin(0+ wt) 3)

where 6 and @ are constants. We obtain this Eq.(3) by the parameter transformation
of the desired thrust direction vector used in the Space Shuttle Powered Explicit
Guida_nce (Ref. 3).

In the guidance scheme G2 and G3, we must predict the increment of position
and velocity due to the thrust acceleration ar. These prediction are represented by
the following integrals.
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T t
Ay = fo dtfo ar(s)Xp(s) ds @

T
Av,=f0 ar(t)X,(t)dt ®)

The thrust acceleration ay under the assumption that the thrust force and the weight
flow rate are constant value is
__C
ar(t) = 2 =—73 ®)

where C* is the effective exhaust velocity , T,, is the mass zero time.

In G2 scheme, Eq.(4) and Eq.(5) can be expressed by some elementary
functions. On the other hand, these equations in G3 scheme can not be expressed by
any elementary functions, however we can calculate them with sufficient accuracy
using the series expansion etc..

In Table 2 and Figure 3, we show the compaﬁson results of each guidance
method.

Table 2
CAPABILITY OF EACH GUIDANCE METHOD

Time of Flight(sec) Fuel Consumption(k Sweep Angle(deq)

NOMINAL 693.9 380.6 20.4
G1 696.2 381.9 20.7
G2 694.0 380.7 205
G3 693.9 380.6 204

We thought the adaptability for the nominal trajectory was important and
selected G3 method as the guidance during the braking phase. Though G2 also has
the adaptability, G3 has the applicable wide range for the thrust direction and the
swept center angle in comparison with G2.

24

21

18

L \‘.\
-§, 15 :___-cg \\\
= L
g 12 | \S\ \
: S
0 ] NOMINAL \5\
-~ G1-GUIDANCE
L —— G2-GUIDANCE
6 G3-GUIDANCE
3 [ L L % L i 1. - i A 1
) 3 6 9 12 15 18 21 24

SWEPT CENTER ANGLE (deg)
Figure 3 Comparison of Nominal Trajectory
222

7



SENSITIVITY ANALYSIS

In the preliminary nominal trajectory, the terminal point of the braking phase
is 3 km altitude from the lunar surface. If the initial state (onboard navigation) error
is very large, there is possibility that the height at the braking phase termination is
under the lunar surface. To make clear this situation, we analyzed the sensitivity of
each state at the terminal point with respect to each initial state error using G3
guidance method. Table 3 shows results of the sensitivity analysis. Here, H,C and L
indicate radial, cross and along track direction respectively, and DH,DC and DL
indicate the time derivative of H,C and L. The evaluation of sensitivities in the cross
track direction are excluded from Table 3, this is because we do not consider the
control for the out of a trajectory plane in this analysis.

Table 3
RESULTS OF SENSITIVITY AT TERMINAL POINT

APrior Emor SHem)  L(km)  DH(m/s)  DL(mv's)
H+1(km) ++1351  10.134  -+1399  10.014
L+1(km) +/+0.383  10.058 -+0.233  0.557
DH+1(mvs) +/+0713  10.025 -+1.397  0.320
DL1(m/s) -/+0.246  +0.000 -/+0.464  0.748

In the present investigation, we assume that the recoverable error after the
braking phase is the position error in H of about 2km, therefore we obtain the error
tolerance at PDI as shown in Table 4 under the condition that each initial state
error occurs independently.

Table 4
ERROR TOLERANCE AT PD!
H(km) L(km) DH(m/s) DL(m/s)
+1.48 5.22 +280 +8.13
ORBIT DETERMINATION

In SELENE lander, the state at PDI is uplinked from the ground station, and
this uplinked state is based on the result of orbit determination. Therefore the state
error at PDI corresponds to the error of orbit determination. Here we describe the
results of analysis about the orbit determination and propagation accuracy.

The accuracy of orbit determination is computed with the pseudo epoch
estimator using Kalman filter algorithm. Then we must consider the effect of
uncertainty parameters, because the degradation of the accuracy is mainly
dominated by these uncertainty parameters. In particular, the degraded effect due
to the uncertainty of Lunar potential is well-known. We treat this uncertainty as the
considered (unadjusted) parameters. These algorithm (Ref 4) are

K=PAI[APAT+P,]" )
P=(I-KA,)P(I-KA,)"+KPK" )
S=S-K(AS+A,) ©)
A =08 4 -92_0zox

*“ ox, 77 dy oJxdy (10)
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where x, is the satellite state (position and velocity) at epoch which is the estimated
parameters, x is the satellite state at time t, yis the considered parameters that are
treated as systematic error sources (¥ corresponds to the error of potential
coefficients mentioned above), z is the modeled measurements, P is the error
covariance matrix, P, is the measurement variances, K is the Kalman gain and Sis
the sensitivity matrix in y on the estimated parameters. The propagation of error
covariance including the effect of the considered parameters are
Pt)e ox(t) ox(t) .
(t)= ox, | ( ox, )
11

+(a:;(t)+ax(t)S)P GHt) Fx(t) o (11)
y ox, YU dy Ix,

where P, is the diagonal covariance matrix for the considered parameters.

The lander will be released from an altitude of about 100km circular polar orbit
ofthe lunar satellite and after de-orbit maneuver, initiated the powered decent from
its perilune point at an altitude of about 15 kilometers. Considering these sequences
and landing to Mare Serentitatis, for covariance analysis, we set up the schedule of
measurements and operations as shown in Figure 4.

PROPAGATION BASED ON THE ORBIT DETERMINATION ~ ~——
REV.2 REV.3 REV.4

TRACKING FOR ORBIT DETERMINATION ﬁ
EPOCH ORBIT DETERMINATION
UPLINK OF STATE AND MANEUVER INFORMATION
DE-ORBIT MANEUVER
* START POINT OF REV : DECENDING NODE POWERED DECENT

Figure 4 Schedule of Measurement and Operation

Here we describe the scenarios of measurements and operations. The tracking
station that is one of the domestic stations tracks the lunar orbiter and measures
range and range rate in the duration of three passes of the lunar orbiter. The orbit
determination process is carried out from the final Loss-Of-Sight(LOS) of tracking to
the next Acquisition-Of-Sight(AOS). Timing, orientation and velocity increments for
the de-orbit maneuver, and timing, initial orientation and initial state at PDI are
uplinked to the lander.

Therefore, to evaluate the initial state error at PDI, we need to propagate the
error covariance of orbit determination from epoch to PDI for about 9 hours, of
course, then we must take into account the effect of the considered parameters.
Table 5 shows the error sources used in covariance analysis, and Figure 5 shows the
error analysis results under the above scenarios.
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The results in Figure 5 indicate that the position accuracy in the cross track
direction is too bad. Because the measurements have no sensitivity of the cross track
direction in order that the orbit plane is parallel to the Earth-Moon line in the

duration of tracking just before landing. Accuracy of the other elements are also not

good.

1-Sigma Position uncertainty [km]

1-Sigma Velocity uncertainty [km/s]
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Table 5
ERROR SOURCES USED COVARIANCE ANALYSIS

Parameter
Lunar orbiter state vectors at Epoch

Lunar potential

Lunar gravity constant
Earth gravily constant
Solar gravity constant
Earth position

Solar position

Range bias

Range noise
Range-rate noise

1-Sigma A prigri Uncertain
100 km in each position component
100 m/s in each velocity component
full coefficients error in Lun60D
0.004 km3/sec? '
0.004 km3fsec?
450000 km3¥sec?
10 mineachof X,Y,20minZ
2000 mineachof X,Y,Z
10m
10m
0.5cm/s
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Figure 5 Propagation Error of Orbit Determination Accuracy
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To improve the propagation accuracy at PDI, we tried the covariance analysis
ofan orbit determination using satellite-to-satellite tracking. The SELENE mission
consists ofa relay, anorbiter and a lander satellite. The initial trajectory ofthe relay
satellite is the same inclination and the perilune height as the orbiter and the
apolune height of about 2500km. Figure 6 shows the results of the error propagation
using the satellite-to-satellite tracking. A priori uncertainty of relay satellite state
uses the results obtained by the another analysis about the relay satellite. The other
conditions are the same as the above case (see Table 5).

The time span from epoch to PDI in Fig.6 is different from it in Fig.5, but the
time span from the end of tracking to PDI that is the most important point in this
analysis is the same as both cases.

In the case shown in Fig.6, to be the difference of ascending node between the
relay and the orbiter satellite of about 27 deg, the position and velocity error in cross
track direction are improved in comparison with the case shown in Fig. 5. :

Table 7 shows the propagation results of orbit determination accuracy at PDI of
the above two cases.
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Figure 6 Propagation Error using Satellite-to-Satellite Tracking
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Table 7
3-SIGMA LEVEL PROPAGATION ERROR AT PDI

CASE H(km) Clkm) Lkm) ' DH(m/s) DC(m/s) _DU(mis)
Station-Orbiter 1.182 111.861 9.411 8.764° 14.469 0.736
Station»Relay—Orbiter 0.855 0.526 8.150 7.422 0.331 0.600

It is clear that the error of position in L and velocity in H at PDI shown - in
Table 7 are not satisfied with the error tolerance at PDI shown in Table 4. However,
by reasons that the correlation coefficient between position error in L and velocity
error in H is about minus one, and the error of same sign in L and DH at PDI occurs
the position error of same sign in H at terminal point (see Table 3), there is
possibility that these two error factors offset each other. In next section, we describe
the total error analysis considering this cancelled effect.

NAVIGATION AND GUIDANCE ERROR ANALYSIS

As mentioned above, we selected the guidance method of the braking phase in
powered decent, and defined a priori state error at PDI. And we performed the error
analyses using these results. Figure 7 shows the outline of this analysis.

NOTE : not consider the potential error
during powered decent

s thrust acc. direction ErEmEmS

Figure 7 Outline of Navigation and Guidance Error Analysis

In this simulation, the terms integrated numerically are the acceleration due to
the thrust force and the lunar gravity constant. The perturbation due to the lunar
potential is not considered. And the time of flight during the braking phase is in
short of about 700sec, the error sources on the environment influenced the lander
motion shown in Table 5 are disregarded.
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Table 8
ERROR SOURCES USED ERROR ANALYSIS IN BRAKING PHASE

Initial position in H 18550 (m)

Initial position in L and velocity in H +8150.0 (m) and -/+7.422 (m/s)

Initial velocity in L +0.600 (nVs)

Initial attitude +0.0406 (deg) in each Roll, Pitch and yaw
Thrust variation 9.0 (%)

Isp variation +9.0 (%)

Tailoff impulse +450.0 (N sec)

initial nay. pos. inH +855.0 (m)

Initial nav. pos in L and vel. in H +8150.0 (m) and -/+7.422 (m/s)

Initial nav. vel. inL +0.600 (m/s)

Initial nav. atftitude +0.0406 (deg) in each Roll, Pitch and yaw
Accelerometer bias +100.0 (ug) in each axis

Accelerometer scale +300.0 (ppm) in each axis

Gy bias +0.015 (deghour) ineach axis

Table 8 shows the main error sources used the navigation and guidance error
analysis of the braking phase. In Table 8, we used the propagation results obtained
by satellite-to-satellite tracking, because we can not evaluate the effect of large error
in cross track direction appropriately to be the lack of the control for the out of plane.

In Table 8, initial position or velocity indicates the error sensed in the onboard
navigation system, and initial nav. position or velocity error indicates the error non-
sensed in the onboard navigation system. And the position error in L and the velocity
error in H are treated as a composite error case by reason of the strong correlation.

Actually, we executed the analyses for total 43 error (86 cases considering the
sign) sources such as the inertial measurement sensors, the thruster characteristics,
the initial state and the onboard navigation state . Table 9 shows the results of the
navigation and guidance error analysis including the effect due to the error sources
besides those shown in Table 7.

Table 9

3-SIGMA ERROR AT TERMINAL POINT (ALT.=3KM)
Parameter Unit 3-Sigma RSS Main Error Source
Time of Flight sec 80.4 Thrust force variation
Fuel Consumption kg 25.9 isp variation
Position in H km 2.8 Initial nav. L pos. & DH vel.
Positionin C km 0.7 Initial C pos.
Position in L km 67.7 Thrust force variation
Velocity in H m/s 8.8 Initial nav. attitude in pitch
Velocity inC m/s 1.5 Initial nav. attitude in yaw
Velocity in L m/s 25 Initial nav. L pos. & DH vel.

.. Considering 3-sigma error sources, Table 9 indicates that the altitude at
terminal point of the braking phase is 3+2.8km and this result is not satisfied with
the altitude requirement over lkm at the terminal point. Accordingly, we should
modify the altitude of about 8km into 4km at the terminal point to secure from
impacting on the surface. By this modification, the range of the altitude at terminal
point considering 3-sigma error is the value of about 1.2km to 6.7km. We tried to
analyze again using new terminal altitude and confirmed to be satisfied with the
requirements for the fuel consumption etc..
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CONCLUSION

From the above analyses, if some conditions such as using satellite-to-satellite
tracking data and modifying the altitude into 4km at the terminal point of the
braking phase are met, we obtained the conclusion there is the adequate possibility
of the safe landing by the navigation with the only inertial measurement sensors
during the braking phase. _

Lunar landing is the first experiment for us, we must still study about many
things to accomplish the SELENE mission.

In the next phase analysis, we are going to perform more detailed analysis
about the orbit determination accuracy with the lunar potential model Glgm2 or
improved by the Lunar Prospector Mission.
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This paper focuses on the three topics related to the trajectory
design of SELENE. The first is the orbit maneuver of the orbiter.
The altitude of the orbiter is 100km and the orbit is strongly
perturbed by high order term of the gravity potential. In order to
satisfy the mission requirements, ten maneuvers are scheduled
during one year mission. The second topic is the orbit design of
relay satellite. The relay satellite has no propulsion system and has
no orbit maneuver capability. The orbit of the relay satellite is
perturbed mainly by earth's gravity and the shape of the orbit
changes through the one year mission. The initial orbit is selected
carefully to meet the mission requirements through the mission
considering the effect of perturbation. The third topic is the
trajectory design of the landing mission. The navigation error in the
landing phase is expected to be large value. Main reason of the
error is orbit determination error and long duration of inertial
navigation. The landing trajectory is designed to permit this
navigation error and assure the safe landing.

INTRODUCTION

SELENE (SELenological and Engineering Explorer), the first ISAS & NASDA joint
mission to the Moon will be launched by H-IIA rocket in 2003. SELENE is a lunar polar
orbiter of 100km altitude with a relay satellite for far-side tracking coverage. The orbiter
is composed of two modules, the Mission Module (MM) and the Propulsion Module
(PM). PM works for attitude and orbit control of the orbiter system for one year during the
global observation. After this observation period, PM separates from the MM and
demonstrates soft-landing on the surface, namely it is operated as Lunar Lander in the
mission.

* Advanced Mission Research Center, National Space Development Agency of Japan. .
Sengen 2-1-1, Tsukuba-city, Ibaraki, 305-8505, Japan
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This paper focuses on the three topics related to the trajectory design of SELENE.
The first is the orbit maneuver of the orbiter to maintain its altitude within the required
range. The second is the orbit design of relay satellite and the third is the trajectory design
of the landing mission. Details of these topics are described from the next section.

ORBIT ANALYSIS OF LUNAR POLAR ORBITER

Orbit Perturbation Analysis

Lunar Polar orbiter is orbited on the 100km circular orbit with inclination of 95
degree. It is required from the science mission group to maintain the altitude of the orbiter
~within the range of 100km =+ 30km. In other words, the eccentricity of the orbit is
‘required to keep under the value of 0.016.

The orbit of SELENE orbiter in the low lunar orbit is perturbed by several factors.
Those are irregularness of lunar gravity potential, the gravity of the earth or the sun, solar
pressure, and so on. However, the most dominant factor is the irregularness of lunar
gravity potential and the other effect of the other factors is relatively low. In this section,
the perturbation caused by the irregularness of lunar gravity potential is solely taken into
account.

As a lunar gravity potential model, Lun60d(1993) is adopted in this paper. It is
composed of 60 degrees of zonal and non-zonal coefficients with their estimation error.
Data source for the gravity potential estimation are the orbit determination data of Lunar
Orbiter and Apollo subsatellites.

One of the mission objectives of Lunar Prospector which now activates is the
precise determination of the lunar gravity potential model. New gravity potential model
based on the Lunar Prospector data will be reflected to the SELENE design no sooner
than it will be published.

Here we want to take up the movement of the eccentricity vector of the orbit under
the perturbation of the lunar gravity potential high order term. The eccentricity vector
mentioned here has the magnitude of the orbit eccentricity and the direction of the orbit
perilune direction. The movement of the tip of the eccentricity vector for the duration of
two month is described in Figure 1. As is shown in the figure, the movement of the
eccentricity vector is highly complicated in case the whole gravity potential coefficients
are taken into account. It is difficult to analyze systematically with the whole potential
coefficients taking into account. In the following analysis, we take the effect of the zonal
term and non-zonal term separately in order to make the systematic analysis. Considering
the non-linear effect between the zonal term and non-zonal term, this analysis, which take
them into account separately, does not give the precise results. However, the following
results indicates that the effect of nonlinearity between the zonal and non-zonal term is
not so significant.

If the zonal term is only taken into account, the time variance of the eccentricity
vector can be calculated analytically®.

Figure 2 shows the drift of the eccentricity vector under the effect of zonal term. The
requirements from the science mission, that is to keep the altitude within the range of 100
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7 30km; is-described by the circle with the radius of 0.016. It shows that in case only the
zonal term is taken into account, the eccentricity vector get out of the admissible range in
120 days.
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Figure 1 Drift of the Eccentricity Vector under the Perturbation
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Figure 2 Drift of Eccentricity Vector in the Effect of Zonal Term

233



In"the othér hand, the time drift of the eccentricity vector under the effect of non-
zonal term cannot be expressed in the form of the fundamental function. To analyze the
effect of the non-zonal term, the numerical simulation is inevitable. Figure 3 shows the
drift of the eccentricity vector for each 1 lunar month (27.3 days). The shape of the each 1
month’s drift trajectory resembles well. Additionally, the center of the trajectory drifts
along the ellipse shown in figure 1, that is the drift trajectory drawn under the effect of the
zonal term only.

The First Month The Second Month’
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- — 15 days per tick mark 2 — 15 days per tick mark
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Figure 3 Drift of Eccentricity Vector of Each Month

If the effect of the non-zonal term is represented by its enclosing circle, the drift of
the eccentricity vector can be estimated as a circular region drifting along the perturbation
ellipse by the zonal coefficient. In case of the orbit altitude 100km and orbit inclination 95
degree, the radius of the enclosing circle is about 0.008.

In the gravitational potential model, the error of the coefficient has been written
additionally. For the system design, it is desirable to consider the worst case in range of
the coefficient error. In this perturbation analysis, it is necessary to rightly estimate the
effect of the gravitational potential coefficient error on the eccentricity vector drift.

As to the zonal coefficient, it is possible to calculate analytically the sensitivity of
the zonal coefficient error against the feature of the eccentricity vector perturbation. In the
altitude maintenance control analysis mentioned after, the worst case from the point of
maneuver interval and maneuver quantity is estimated. Figure 4 shows the drift trajectory
of the eccentricity vector in the worst case considering the zonal coefficient error. “The
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worst case’™ means the case in which the altitude becomes the limit of the permissible
altitude-(£=30km) in the shortest time. It corresponds to the case in which the drift
trajectory reaches the limitation circle of radius 0.016 in the figure the shortest time. In
case using the nominal coefficient, it takes 120 days for the eccentricity vector to reach
the limit. However, it takes only 67 days for the eccentricity vector to reach the limit
circle in the worst case.
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’ Figure 4
Drift of Eccentricity Vector Considering Zonal Coefficient Error

Since the sensitivity of the non-zonal coefficient error cannot be calculated
analytically, the worst case of the eccentricity vector perturbation cannot be specified. In
the altitude maintenance maneuver analysis mentioned below, the non-zonal coefficient
error is not taken into account when the eccentricity vector perturbation is analyzed.
Instead, in order to cope with the non-zonal coefficient error,20% margin for the whole

orbit maneuver AV is appropriated.

Altitude Maintenance Control Analysis

The orbit maneuver AV necessary for maintaining permission altitude which is a
demand from the observation mission is discussed here. It is considered in the worst case
including the zonal coefficient error.

The approach of the altitude maintenance control is shown in figure 5. The
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perturbation of the eccentricity vector by a gravitational potential is considered as an
enclosing circle-drifting on the perturbation ellipse only considering the zonal coefficient.
The effect of the non-zonal coefficient is represented by the circular region. Since the
eccentricity vector exists somewhere in the circle, the altitude limitation will never
violated if appropriate maneuver is executed when the enclosing circle touch the
limitation circle. In case of the figure, the enclosing circle touches the tolerance limits in
the right side. Then the maneuver is carried out to move the eccentricity vector as left as
possible in order to gain the maximum maneuver interval. The objective point is the
center of the enclosing circle which touches the tolerance limits at the left. By this way,
the tolerance limits will never be violated even if the eccentricity vector exists anywhere
in the enclosing circle. AV necessary for moving the eccentricity vector in the way
mentioned above becomes a controlled quantity per-1 maneuver. Non-zonal coefficient
error is not yet considered in this stage.

e Xsin(w)

e Xsin(w)

~*UE Ttransition of ectentricity vector )
e Xcos( @,
€Xcos(®) (e effect of zonal item) (@)

Figure 5 Maneuver Interval and AV in Altitude Maintenance Control
The result of the altitude maintenance control analysis is shown in table 1. It is a

result of the worst case considering the zonal term coefficient error. 20% margin for the
Non-Zonal term coefficient error is contained in the AV for 1 year mission.

Table 1
RESULT OF ALTITUDE MAINTENANCE CONTROL ANALYSIS

Maneuver AV for one AV for 1 year
ec Model - Interval maneuver maneuver
LUNG60d 66 days 19.6m/s 118m/s
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The result of the altitude maintenance control analysis is shown in table 1. It is a
result of the worst case considering the zonal term coefficient error. 20% margin for the
Non-Zonal term coefficient error is contained in the AV for 1 year mission.

ORBIT ANALYSIS OF RELAY SATELLITE

The relay satellite does not have the orbit maneuver capability, and its orbit through
whole mission duration (1 year and 2 months) is decided by the condition at the relay
satellite separation. In the initial orbital elements of the relay satellite, ascending node £,
argument of perilune @, and inclination i (that means the perilune direction and the

.orbital plane) equals to those of the orbiter' when the lunar orbit injection sequence of the
relay satellite is considered. Additionally, perilune altitude equals to 100km which is the
altitude of the orbiter. As a result, free design parameter in relay satellite orbit elements is
only semimajor axis a (or eccentricity e).

Orbit Settings of Relay Satellite

It is necessary to take in mind two roles of the relay satellite, when setting the relay
satellites orbit.

The first is to relay signals to the orbiter at the far side of the moon. The signals
include command, telemetry, Doppler shift measurements and ranging Four way Doppler
shift measurements relayed by the orbiter and the relay satellite will determine the
gravitational mapping of the far side of the moon with high resolution and sensitivity. The
coverage of lunar gravimetry for the far side is principally restricted by the limited
opportunity of four way communication link. From this point of view, the orbit of the
relay satellite is required to be visible for long duration from the orbiter at the far side of
the moon. In other words, the apolune altitude of the relay satellite’s orbit is required to be
sufficiently high.

The second role of the relay satellite is the radio sources for Delta VLBI observation.
The radio sources will be also loaded on the propulsion module of the SELENE orbiter
which will be separated and land on the near side of the moon surface after the polar
orbital mission period for one year. Delta VLBI observation using radio sources loaded on
the relay satellite and the propulsion module on the moon surface will be made for two
months after the propulsion module will be landed. The data will be analyzed to derive
the precise orbits of the relay satellite and contribute to determine precisely the gravimetry
and the libration of the moon. From this point of view, the average altitude of the relay
satellite is required to be sufficiently low so that the effect of gravity can be observed
clearly.

The semimajor axis of the relay satellite was set to 3000km considering the
conditions mentioned above.
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Relay Satellite Perilune Altitude Analysis

Delta VLBI mission will be carried out for 2month after the landing of the
propulsion module on the lunar surface. This means that the mission period is set from 1
year to 1 year and 2 months after from the orbit injection of the relay satellite. It is
required from the delta VLBI mission to keep the perilune altitude of the relay satellite at
Okm~ 600km during the mission period. In this section, the result of the perilune altitude
analysis during the delta VLBI mission period is shown.

There is no orbit maneuver executed for the relay satellite after the separation from
the orbiter. Therefore, the orbit through the whole mission duration of the relay satellite is
determined by the initial state in the orbit injection.

Firstly, the date of the relay satellite injection is an important factor. Since the main
-perturbation factor to the relay satellite orbit is the earth's gravity, and the positional
relation of the earth and relay satellite orbit changes by the injection date. Next, for the
orbital element, a, e are set to the above-mentioned value and i, £2 are set to the value
equal to those of the orbiter. For the remaining element, @, it is also decided from the
closest approach condition of the translunar trajectory, when the injection date is
designated. In short, the free parameter as an initial state is only the injection date, and the
orbit of the relay satellite through the whole mission duration will be determined for the
injection date.

As a result, the perilune altitude during the delta VLBI mission period will be also
determined for the injection date. Figure 6 plots the perilune altitude at the 360th and the
420th day from the relay satellite orbit injection. Horizontal axis indicates the assumed
launch date in the summer 2003. “360” and “420” is the day when the delta VLBI mission
starts and ends. It indicates that, for some launch date, the perilune altitude at the 420th
day becomes negative, and the relay satellite collides with the lunar surface during the
delta VLBI mission period. From this result, it can be concluded that, there are only 17
days which can satisfy the requirements of the delta VLBI mission.

Perilune Altitude(km)
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400 | e g e \\
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300 ¢ / \‘\.\ %
/ /,./420days _."-“‘ 7
20}/ Ly
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100 _:' /// ' /',. /.
{ \ S
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Launch Date

Figure 6 Perilune Altitude of the Relay Satellite
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The launch window for SELENE is also constrained from the other constraints such
as the AV in the lunar orbit injection, the launch condition of the rocket, the eclipse on
the translunar trajectory, etc.. Assuming the launch in summer, 2003, launch window of
12 days in one month remain.

LANDING TRAJECTORY

After the one year observation, the payload module separates from the mission
module and demonstrates soft-landing on the lunar surface, namely it is operated as lunar
lander in the mission. '

Landing sequence of the propulsion module is shown in figure 7. The propulsion
‘module separates from mission module on a circular orbit of altitude 100km. The
propulsion module executes de-orbit maneuver and it is injected into the elliptical orbit of
whose apolune altitude 100km and perilune altitude 15km. After the coasting phase for
half way of elliptical orbit, the powered descent phase starts. In the powered descent
phase, the maneuver which mainly cancels the horizontal velocity is executed and
terminal condition of velocity Om/s and altitude 4km is achieved. Vertical attitude is
established within short seconds in the beginning, and the vertical descent maneuver is
carried out to achieve soft landing on the lunar surface.

Propulsion
Module

15km
Transfer

Power Descent Phase

......................... 4050m
Attitude Stabilization Phase
. A Sl n Phase

Vertical Descent Phase

.. Engine Cut-off .. m

%2 Moon Surface

Deorbit

Figure 7 Landing Sequence
Precise sequence of each phase are described in the following.

Before Separation

Orbit and attitude determination are carried out before the propulsion module
separation. The summary of the orbit determination sequence is shown in figure 8. 5 or
6 passes are visible in one day from the tracking station in Japan. The visible duration in
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each pass is about one hour. That is to say, the satellite passes the near side of the moon
for 5 or 6 times in the visible duration from Japan. The orbit determination is carried out
using the tracking data of the first 3 passes, and the orbit determination value is
transmitted in the fourth pass. The landing is carried out in the fifth pass. The sixth pass is
unavailable for the landing, because the transmission time after landing is insufficient for
sending image data in this case. The attitude determination is carried out using the star
sensor mounted on the mission module. The orbit determination value sent from the
ground and the attitude determination value from star sensor are used as an initial value of
the inertial navigation system of the landing phase.

Visible from pass 1 pass 2 pass 3 pass 4 pass 5 pass 6
" Tracking Station | i
T
Event Tracking Landing

Transmit Orbit Determination Result

Figure 8 Orbit Determination Sequence

For the reduction of navigation error, the orbit determination had better be carried
out after the propulsion module is injected into the elliptical orbit. However, the power of
the propulsion module is supplied from its battery, and its capacity is not enough for long
hours operation. For the sufficient orbit determination accuracy, at least 3 visible pass,
that is, about 6 hours of orbit determination period is necessary. This duration is too long
to supply power only by the battery on the propulsion module. This is the reason why the
orbit determination is carried out before separation. It is about 1 hour after the attitude
determination in the time to the landing, and the drift error of the gyro is negligible. There
is no problem in carrying out the attitude determination in this stage.

Separation and De-orbit of Propulsion Module

“Mare Serentitatis” in the near side of the moon is planned to be landing point (about
20 degE and 25 degN). As mentioned above, the propulsion module coast half way of the
elliptical orbit before the powered descent phase. Therefore, the injection to the elliptical
orbit is carried out in the back side of the moon. The separation of the propulsion module
is carried out just before the elliptical orbit injection in order to shorten the operation time
of the propulsion module as possible.

The separation velocity is about 10cm/s, and the navigation error produced in this
phase is negligible. AV necessary for the elliptical orbit injection is about 20m/s. At this
maneuver, an output of the accelerometer is referred, and the engine is cut off at the
timing when the required velocity increment is acquired. As a result, the elliptical orbit
injection is achieved without producing large AV error in spite of thrust error, etc..
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Coasting Descent Phase

The propulsion module is injected into the elliptical orbit whose apolune altitude
100km and perilune altitude 15km, and coasts for half way of the orbit. Its position and
velocity are propagated on the onboard inertial navigation system. The powered descent is
started when the vertical velocity becomes zero, in other words, at the perilune passage
point.

Powered Descent Phase

The navigation during the powered descent phase is also done only according to the
information of inertial measuring unit (IMU). Though there is a radio altimeter/
_velocitymeter installed in the propulsion module underside, it is not yet available in this
phase. The reason is that the attitude of propulsion module is almost horizontal, and
measurement direction is out of range. As a guidance system, the explicit guidance
method to optimize the propellant consumption is used. The descent trajectory is almost
reverse of the ascent trajectory of the rocket, and various guidance method used in the
rocket launch is applicable for the guidance method in this phase. There is no significant
difference in the guidance performance among each method. Only the altitude (4km) and
velocity (horizontal/vertical direction Om/s) are designated as a terminal condition. The
horizontal position is not designated as a guidance target. From the result of the guidance
error analysis, the guidance error has fallen within the enough small value. This fact
shows that the propulsion module can be guided to the goal point in its own navigation
system, even in the existence of the thrust error, etc.. However, the navigation error is a
different problem. Since the IMU is the only available sensor after the orbit determination,
the navigation error considerably increases., For example, the altitude error at the end of
the powered descent phase is estimated as 3.6km for 3 0. In short, even if the guidance
system works well and the propulsion module is guided accurately to the target on the
inertial navigation system, the actual altitude of the propulsion module disperses in the
range of 0.4km~7.6km for 30 at the end of the powered descent phase.

Vertical Descent Phase

The attitude of the propulsion module at the end of the powered descent phase leans
70 degrees from the vertical direction. Vertical attitude establishment phase for about 7
seconds is set in the beginning of the vertical descent. It falls about 50m in this phase.
The radio altimeter/speedometer is available at this moment, and actual altitude
information can be used in the navigation system for the first time. Combined navigation
system which uses the information of the IMU and the radio altimeter/velocitymeter is
used in this phase. From the result of the navigation error analysis, there is about 2m/s
( for 3 0) horizontal velocity error in the beginning of the vertical descent phase. The
horizontal velocity error cannot be removed only by the altimeter information. Therefore,
in order to satisfy the landing condition, the radar velocitymeter is necessary. The vertical
descent phase is basically a sequence using free fall and the maximum thrust deceleration.
A breaking line which is set at the beginning of the vertical descent phase considering the
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mass and thrust error. The on-off signals of the main engines is set referring this line. As a
result of these sequence, the soft landing is achieved.

CONCLUSION

Three topics related to the trajectory design of SELENE are introduced. The
feasibility of the mission is verified through the conceptual design study. The SELENE
project is phased up to the preliminary design phase this spring and more detailed studies,
tests and simulations will be done to confirm the system feasibility.
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Abstract In this paper a temporal finite element method is
developed for dynamics and optimal control problems. The approach
is here proposed in order to determine the optimal initial conditions,
and the optimal control law to perform the desired soft landing on the
South Pole of the Moon. The spacecraft is modeled as a point mass
subject to gravity forces due to the Moon, the Earth and the Sun, and
controlled by an ideal throttable thrust. An estimation of total
propellant consumption is presented taking into account possible
errors arising from a poor knowledge of the present force model.
Finally an optimal control strategy for obstacles avoidance is
proposed. Some sample problems show the effectiveness of the
proposed approach. ’

INTRODUCTION

Various space agencies are presently studying or approving several new missions to
the Moon. The demonstration of landing technologies is an essential feature of all
these new mission plans (Lunar-A, SELENE").

In particular the mission target is to perform a precise soft landing in a
morphological complex area on the South Pole of the Moon. In order to achieve this
mission goal and to lead the project to success it is necessary to minimize risks of a
hard landing, reducing costs in term of weight budget.

As demonstrated in previous works® this is a challenging task due to the strongly
non uniform and yet not well known gravity field of the Moon which will give great
dispersion in final results. Thus the consequences of a wrong force field prediction on
the design of a landing trajectory should be analyzed.

The landing problem can be handled as a typical boundary values problem in which
the final position and a series of constraints on the trajectory must be met.

In this paper a Spectral Elements in Time (SET) approach is proposed in order to
determine the optimal initial conditions, and the optimal control law to perform the
desired soft landing on the South Pole of the Moon. The spectral elements approach is
based on a variational method coupled with a spectral elements discretization of the
solution which leads to a fast and compact memory algorithm and allows the
introduction of several constraints conditions in order to fulfill all the requirements of
this kind of mission.

The landing mission is here divided in two phases: a coast phase and a homing
phase. The analysis of the coast phase is performed considering the GLGM-2 gravity

* Dipartimento di Ingegneria Aerospaziale Politecnico di Milano, via Golgi 40, 20133 Milano, ltaly
*DEOQS, Delft Institute for Earth-Oriented Space Research, Kluyverweg 1.2629 HS, Delit, The Netherlands
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model and the perturbing effects of the Earth and the Sun; however, as stated before,
the uncertainty on present gravity models could lead to major errors in coasting
trajectory predictions. Thus different possible coasting orbits with different geometry
have been studied.

A wrong prediction in the coasting trajectory endpoint propagates through a
variation of the homing trajectory which could lead to a hard landing. The extra mass
and thrust requirements to correct the final descent are analyzed here imposing an
error in the gravity model and computing a new optimal homing descent.

The error is estimated considering both the uncertainty on the GLGM-2 coefficients
- obtained from the covariance analysis - and a completely different gravity model.

The second phase is characterized by a poor knowledge of the landing site,
therefore altimeter data and images should be processed during the mission in order to
determine the landing area correctly. Thus an optimal control law is introduced in
order to correct the descending trajectory on the basis of real time data acquisition.

Finally some results proving the effectiveness of the proposed approach will
conclude this paper and possible initial conditions and control law, to conduct a soft
landing, are presented.

SPACECRAFT AND FORCE MODEL

The basic set of equations of motion of the spacecraft subject to a generalised force
function f and to a control u can be expressed in the following general form:

x=f(x,u) (D

The state vector X, in a Cartesian reference frame (see Figure 1), can be expressed
in terms of displacements q and momenta p as follows

’
Xz{anpy,Pz,qx,qy,q:} ; (2)
while the function f(x,u) is defined as

T
oU(q) u dU(q) u,  9U(q) a
f= + X , , 2 ’ ’ , 3

{ aq, (1+my) dq, +(1+mk) 2. +(1+mR) P.sP,:P. ¢ (3

where u,, u, ,u, are the three components of the control along the Cartesian axis
XY, Z. :

The mass ratio mp is defined as mp/m;, where m, is the propellant mass and m; is
the dry mass of the spacecraft. Furthermore a linear mass flow equation is added to the
differential system in order to take into account the dependency of the mass on the
thrust modulus {lzll:

my =i/ c 4)
where ¢ is the exhaust gas velocity c=I;,g, with I, the specific impulse and g, the
gravity acceleration on Earth surface.

The function U is the potential due to the gravity forces acting on the spacecraft,
namely the gravity field of the moon and third body perturbations.

In a selenocentric reference frame (see Figure 1), the potential of the lunar gravity
field given as expansion into spherical harmonics is a sum of the potential of a sphere
and the perturbation accounting for all the deviations of a real body from a sphere':

4
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_ My < (Ru ' 9, 9, q
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(6)

where Wy is the gravity parameter of the
Moon, Ry is the mean equatorial radius and 0
is the phase of lunar rotation, namely the angle
between some body fixed direction along the
equator and some inertial direction along the
equator.

The perturbing function due to the presence
of the Earth and the Sun can be developed in
terms of the displacements q and of the
g position of the planet relative to the local co-

"®_ South Pole | ordinate frame as follows’:

1 <q,p5> )
Figure.1. Selenocentric reference Rp(q) = py 4, p J N

frame : : . .
where pp is the gravity parameter of the third

body, namely the Earth or the Sun, pp is the selenocentric position radius of the third
body and djp is defined as follows:

dy=(p;+q°—2pzqcosd)"” 8)
where 8 is the angle between p and q.

OPTIMAL CONTROL FORMULATION

Let consider a performance index of the form:
J=ox(e.0 [* +f LIx(r), u(t),£)dt €

where Q(x,#) is a discrete function of the states and time at the final time and L(Xx,u,?)
is an integrand performance index.

The problem is to find a state function x:[tp¢/—R" and a control function
u:[to ] >UcCR™, that minimize (or maximize) the cost function (9), subject to
conditions (1),(4) and to the following conditions on final boundaries:

O(x,t)=0 (10)

Adjoin* the system differential equations (1) and (4) and boundary conditions (10)
to J, respectively with multiplier functions A(2) and v :

T =[x, t) +V'd(x, t)]| + j [L+AT(f ~ %) +A,,(rh, +[ule)lde (11)

For convenience, define a scalar functlon H as follows:
HIx(6),u(t), A0),61= L[x(6),u(0), e]+ A ()E[x(0),u(e), ]+ 4, (Ofu(t)fe (12)
Taking the first variation of J, considering also differential changes in the terminal
time £, the following is obtained:
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81 = [g:f ]8x+5vT<I>l +8t, (ﬂnu%“’ a“’)'+

t ot

(13)
j [8L — A % + BATf — A"8x + ATSf + )., (1, +cful) + A, 8ty +A, c—— " " 5u)]dt—

In order to have boundary conditions of the weak type the followmg terms® are
adjoined to expression (13):

AT (x—x") +A°8x || +8AT, (mg —mb) +A°,3my |/ (14)
with the costates boundary values at final time A+” defined * as follows:

a¢(x,t)+v’[‘ 5<D(x,t) =/1/7
= A

ox ox (13)
The resulting equation takes the form:
81 =°8x || +8V'® | +[OX" (x—x°) + 8, (mg —mp) + A2 8my ] |\ +
a‘P VT 0d T )!:,
ot —+Vv —+L+Af 16
( at at | (16

t
+ 'f [8L— 8A"% +BA"E — A"8% -+ A"8f + 8., (1ing +cful) + A, Sring + Aot g ] 8u)]dt =
t; i

After an integration by parts of the term SA'x, the expression (16) reduces to the
form:

te
ST =A8x | +&V'® | +(-8\"x" +8\,,mp) | +6t(%—(§-+vT§§—+L+ka}l +
G e e L P
J [L+8A'x + SA'f — A8k + A"3f - 6A ,my + A, 8t +8A, Jullc+ kmca—ﬁu)]dt =0
[ U
The controls, both at boundary and at internal nodes, have to satisfy necessary
condition H,(x,A,4,¢)=0 and Legendre-Clebsch condition H,,.(x, A, u,1)20.

THE SET APPROACH

The finite elements in time method (FET) has been successfully applied to a large
number of problems in computational mechanics, spacing from rigid body dynamics to
structural mechanics, wave propagation, fluid dynamics and optimal controP "%,

In this paper we propose a slightly different approach using, instead of FET,
Spectral Elements in Time (SET) a high-order finite element technique that combines
the geometric flexibility of finite elements with the high accuracy of spectral methods.
Spectral method, pioneered in the mid 1980’s by Anthony Patera’ at MIT for fluid
dynamics problems, is here applied to the integration of ODEs in the time domain,
being spectral elements in time more accurate and efficient in finding the solution for
our problems involving less memory space and less computational cost.

Both FET and Spectral Elements methods offer some interesting features that make
them attractive in automated numerical procedures:
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e Through the use of spectral basis for shape functions, high order methods can be
constructed, therefore allowing the development of automated p and Ap adaptive
procedures.

» Using a time assembly process, they allow the solution of general boundary-
value problems. Besides the computation of the system response, this technique
provides at a negligible extra computational cost an approximation of the
transition matrix that allows to perform a linearised stability analysis of the
solution’.

e The variational framework is an ideal context for developing constrained
formulations for mechanics®, leading to schemes characterized by robust
numerical behavior.

The variational principle (17) is the governing equation for the weak Hamiltonian
method for optimal control problems. This formulation provides the base for the
development of the SET discretization for general boundary problems.

Now let the time domain D(#, )R be decomposed into N finite time elements:

D=U, D,(1,.t,,.) (18)

The parametric approximations of the trial functions (x,A,u,mg) and test functions
(8x, 0A,0u,dmp) are developed within the space of the polynomials of order k-1 and k
respectively:

{fnk}=2 f‘.(t){:;} {i}=2 f.xm{i} (19)
{?nk}=§ g.\.(t){;;} Ejm}=g g.‘.(t)Ez‘} (20)

k k
u=Y, f.(u, &=, f.(H&, 1)
y=]

s=1

where the functions fand g are defined as follows:
fePD); ge PA(D) (22)

and the quantities x,, A, #; and mp, are internal node values.
In a more general way we could decompose the domain D as a union of smooth
images of the reference time interval [-1,1] where we define a reference parameterv:

L= Lip _ L=y
L — 1 At

(23)

The basis functions fand g can be constructed by using Lagrangian interpolants
associated with the internal Gauss-Lobatto node®. Thus if {€; },-; are the set of Gauss-
Lobatto points on the reference interval [-1,11, fiv) will be the Lagrangian
interpolating polynomial vanishing at all the Gauss-Lobatto nodes except at &; where it
equals one. Each integral of the continuous form (17) is then replaced by a Gauss

quadrature sum:
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where o; is the weight associated with &;.

By the discrete form (24) two distinct procedures can be derived:

e An implicit time marching self-starting integration obtained for initial value
problems

e An assembled process developed for boundary value problems, obtained by
matching the final boundary state of each element with the initial state of the
subsequent element.

Both approaches are taken into account in this effort: while the assembled system is
used to solve the optimum problems, the time marching integrator is used to propagate
the initial condition founds, forward and backward in time.

By the SET discretization the differential problem is transformed into a system of
non-linear algebraic equations. Then a numeric optimization process can be used to
minimize the objective function satisfying the differential constraints. All the
additional constraints on the state and on the control are discretized and directly
implemented into the optimization process. Here a Newton algorithm with line search
is adopted to solve the non-linear system arising from discretization. Linearised
algebraic equations for a single spectral element yield:

I ¥ 8y, =—R,, (25)
where Jie) is the elemental tangent matrix, R the elemental residual vector,
Aye=(Ax,AALAu,Ampg), are increments to nodal states, costates and controls, while
the subscript (.)¢) refers to elemental quantities. The global matrix formulation can
then be obtained through the standard finite element assembly process performed on
the corresponding elemental matrices:

J *Ay=-R (26)

The matrix J is highly sparse'® and can be conveniently stored in a compressed
format and solved by an iterative sparse solver.

CONVERGENCE ANALYSIS

The validation of the optimization algorithm has been performed on several
problems taken from Ref.4. In particular we compare our results to two sample
problems presented in Ref.5 where a finite elements techniques is developed for

7
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optimal dynamics problems. The first optimal control problem is a transfer of a
particle on a rectilinear path with fixed time. The thrust angle is the control and the
particle has constant mass and constant acceleration modulus:

f(x,u,t) = {a cos(u),asin(u), p, .p‘_}r (27)

1E+0 IS ordor FET The objective func~tion .is the final
horizontal component of velocity that should
g 1E-1 2ndorder SET| o 1o vimized:
;

S B2 J=ox®,0 " =p; (28)
o :
g= 1E-3 Initial conditions are fixed and there are
E also two terminal constraints on state: fixed
1E-4 final height and final vertical component of

1E-5 AN IO I A velocity, which must be zero:
10 100 x| ={o.q,-m.p.00 || 0
Number of Nodes (D( ’ )' { ’(qy. ),'px,'} t (. )
Figure.2. Relative error on final In Figure 2 a comparison in final solution
thrust inclination, versus accuracy is made between the solution
computational cost obtained using a spectral discretization with

polynomials of the 2nd order, both for the
control and the state, and the results reported in Ref.5 in which finite elements of the
first order for the state and of order zero for the control have been used.

As can be seen increasing the order of the polynomials, especially for the control,
reduces the over all cost. Spectral basis for the generation of polynomials of high order
guarantees numerical stability of the integration algorithm allowing p adaptivity'®,
where the solution is continuous, and flexible h adaptivity where it’s not.

THE LANDING PROBLEM

In order to make the right choice for the best landing maneuver two main drivers
have been identified: the overall cost, in terms of weight budget, and the reliability.
Thus two are the main problems analyzed here:
¢ find a reliable orbit, for the coast phase, which can be used as safety path in case of

landing abort ’

e evaluate the propellant consumption and the maximum thrust needed to perform the
desired homing trajectory, taking into account errors arising from non correct
modeling of the present force field. '

Coast Phase

A stable periodic orbit for the coast phase would reduce the risk of a hard landing
even without a huge amount of propellant, and could be a reliable parking orbit in case
of a landing abort. However the lack of data on the real gravity field of the moon gives
a meaningful uncertainty on the frozen/periodic orbit location. This can be clearly seen
in Figures 3-7 where three different solutions, generated'' using respectively
Lemoine’s GLGM-2 model, Konopliv’s Lun60d and GLGM-2 plus uncertainties
(sigmas) on harmonics coefficients, are represented. In particular the huge variation of
180° in frozen periselenium anomaly should be noted.
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Thus different possible orbits with different orbital elements have then been
analyzed and three specific cases are discussed here: a direct descent from a 100x 100
km parking orbit down to a 100x20 km orbit with the periselenium over the South
Pole; a direct descent from a 100x100 km parking orbit down to a 70x20 km
frozen/periodic orbit with the periselenium over the South Pole; a two-steps maneuver
which exploits an intermediate 50x20 frozen/periodic orbit with the periselenium over
the North Pole. Exact orbital elements are reported in Table 1, while in Figure 9 orbit
geometry for the three coasting trajectories are represented and, for each maneuver,
ignition time and thrust modulus u (constant) reported. Table 2 summarizes the
propellant consumption budget for the coast phase, taking into account extra
propellant necessary to come back on a stable orbit in case of landing abort.
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